Menu
September 22, 2019

Closed genome and comparative phylogenetic analysis of the clinical multidrug resistant Shigella sonnei strain 866.

Shigella sonnei is responsible for the majority of shigellosis infections in the US with over 500,000 cases reported annually. Here, we present the complete genome of the clinical multidrug resistant (MDR) strain 866, which is highly susceptible to bacteriophage infections. The strain has a circular chromosome of 4.85?Mb and carries a 113?kb MDR plasmid. This IncB/O/K/Z-type plasmid, termed p866, confers resistance to five different classes of antibiotics including ß-lactamase, sulfonamide, tetracycline, aminoglycoside, and trimethoprim. Comparative analysis of the plasmid architecture and gene inventory revealed that p866 shares its plasmid backbone with previously described IncB/O/K/Z-type Shigella spp. and Escherichia coli plasmids, but is differentiated by the insertion of antibiotic resistance cassettes, which we found associated with mobile genetic elements such as Tn3, Tn7, and Tn10. A whole genome-derived phylogenetic reconstruction showed the evolutionary relationships of S. sonnei strain 866 and the four established Shigella species, highlighting the clonal nature of S. sonnei.


September 22, 2019

Spread of carbapenem resistance by transposition and conjugation among Pseudomonas aeruginosa.

The emergence of carbapenem-resistant Pseudomonas aeruginosa represents a worldwide problem. To understand the carbapenem-resistance mechanisms and their spreading among P. aeruginosa strains, whole genome sequences were determined of two extensively drug-resistant strains that are endemic in Dutch hospitals. Strain Carb01 63 is of O-antigen serotype O12 and of sequence type ST111, whilst S04 90 is a serotype O11 strain of ST446. Both strains carry a gene for metallo-ß-lactamase VIM-2 flanked by two aacA29 genes encoding aminoglycoside acetyltransferases on a class 1 integron. The integron is located on the chromosome in strain Carb01 63 and on a plasmid in strain S04 90. The backbone of the 159-kb plasmid, designated pS04 90, is similar to a previously described plasmid, pND6-2, from Pseudomonas putida. Analysis of the context of the integron showed that it is present in both strains on a ~30-kb mosaic DNA segment composed of four different transposons that can presumably act together as a novel, active, composite transposon. Apart from the presence of a 1237-bp insertion sequence element in the composite transposon on pS04 90, these transposons show > 99% sequence identity indicating that transposition between plasmid and chromosome could have occurred only very recently. The pS04 90 plasmid could be transferred by conjugation to a susceptible P. aeruginosa strain. A second class 1 integron containing a gene for a CARB-2 ß-lactamase flanked by an aacA4′-8 and an aadA2 gene, encoding an aminoglycoside acetyltransferase and adenylyltransferase, respectively, was present only in strain Carb01 63. This integron is located also on a composite transposon that is inserted in an integrative and conjugative element on the chromosome. Additionally, this strain contains a frameshift mutation in the oprD gene encoding a porin involved in the transport of carbapenems across the outer membrane. Together, the results demonstrate that integron-encoded carbapenem and carbapenicillin resistance can easily be disseminated by transposition and conjugation among Pseudomonas aeruginosa strains.


September 22, 2019

Genome plasticity of agr-defective Staphylococcus aureus during clinical infection.

Therapy for bacteremia caused by Staphylococcus aureus is often ineffective, even when treatment conditions are optimal according to experimental protocols. Adapted subclones, such as those bearing mutations that attenuate agr-mediated virulence activation, are associated with persistent infection and patient mortality. To identify additional alterations in agr-defective mutants, we sequenced and assembled the complete genomes of clone pairs from colonizing and infected sites of several patients in whom S. aureus demonstrated a within-host loss of agr function. We report that events associated with agr inactivation result in agr-defective blood and nares strain pairs that are enriched in mutations compared to pairs from wild-type controls. The random distribution of mutations between colonizing and infecting strains from the same patient, and between strains from different patients, suggests that much of the genetic complexity of agr-defective strains results from prolonged infection or therapy-induced stress. However, in one of the agr-defective infecting strains, multiple genetic changes resulted in increased virulence in a murine model of bloodstream infection, bypassing the mutation of agr and raising the possibility that some changes were selected. Expression profiling correlated the elevated virulence of this agr-defective mutant to restored expression of the agr-regulated ESAT6-like type VII secretion system, a known virulence factor. Thus, additional mutations outside the agr locus can contribute to diversification and adaptation during infection by S. aureus agr mutants associated with poor patient outcomes. Copyright © 2018 Altman et al.


September 22, 2019

Comparative analyses of CTX prophage region of Vibrio cholerae seventh pandemic wave 1 strains isolated in Asia.

Vibrio cholerae O1 causes cholera, and cholera toxin, the principal mediator of massive diarrhea, is encoded by ctxAB in the cholera toxin (CTX) prophage. In this study, the structures of the CTX prophage region of V. cholerae strains isolated during the seventh pandemic wave 1 in Asian countries were determined and compared. Eighteen strains were categorized into eight groups by CTX prophage region-specific restriction fragment length polymorphism and PCR profiles and the structure of the region of a representative strain from each group was determined by DNA sequencing. Eight representative strains revealed eight distinct CTX prophage regions with various combinations of CTX-1, RS1 and a novel genomic island on chromosome I. CTX prophage regions carried by the wave 1 strains were diverse in structure. V. cholerae strains with an area specific CTX prophage region are believed to circulate in South-East Asian countries; additionally, multiple strains with distinct types of CTX prophage region are co-circulating in the area. Analysis of a phylogenetic tree generated by single nucleotide polymorphism differences across 2483 core genes revealed that V. cholerae strains categorized in the same group based on CTX prophage region structure were segregated in closer clusters. CTX prophage region-specific recombination events or gain and loss of genomic elements within the region may have occurred at much higher frequencies and contributed to producing a panel of CTX prophage regions with distinct structures among V. cholerae pathogenic strains in lineages with close genetic backgrounds in the early wave 1 period of the seventh cholera pandemic.© 2018 The Authors. Microbiology and Immunology published by The Societies and John Wiley & Sons Australia, Ltd.


September 22, 2019

Nondestructive, base-resolution sequencing of 5-hydroxymethylcytosine using a DNA deaminase.

Here we present APOBEC-coupled epigenetic sequencing (ACE-seq), a bisulfite-free method for localizing 5-hydroxymethylcytosine (5hmC) at single-base resolution with low DNA input. The method builds on the observation that AID/APOBEC family DNA deaminase enzymes can potently discriminate between cytosine modification states and exploits the non-destructive nature of enzymatic, rather than chemical, deamination. ACE-seq yielded high-confidence 5hmC profiles with at least 1,000-fold less DNA input than conventional methods. Applying ACE-seq to generate a base-resolution map of 5hmC in tissue-derived cortical excitatory neurons, we found that 5hmC was almost entirely confined to CG dinucleotides. The whole-genome map permitted cytosine, 5-methylcytosine (5mC) and 5hmC to be parsed and revealed genomic features that diverged from global patterns, including enhancers and imprinting control regions with high and low 5hmC/5mC ratios, respectively. Enzymatic deamination overcomes many challenges posed by bisulfite-based methods, thus expanding the scope of epigenome profiling to include scarce samples and opening new lines of inquiry regarding the role of cytosine modifications in genome biology.


September 22, 2019

An introduced crop plant is driving diversification of the virulent bacterial pathogen Erwinia tracheiphila.

Erwinia tracheiphila is the causal agent of bacterial wilt of cucurbits, an economically important phytopathogen affecting an economically important phytopathogen affecting few cultivated Cucurbitaceae few cultivated Cucurbitaceae host plant species in temperate eastern North America. However, essentially nothing is known about E. tracheiphila population structure or genetic diversity. To address this shortcoming, a representative collection of 88 E. tracheiphila isolates was gathered from throughout its geographic range, and their genomes were sequenced. Phylogenomic analysis revealed three genetic clusters with distinct hrpT3SS virulence gene repertoires, host plant association patterns, and geographic distributions. Low genetic heterogeneity within each cluster suggests a recent population bottleneck followed by population expansion. We showed that in the field and greenhouse, cucumber (Cucumis sativus), which was introduced to North America by early Spanish conquistadors, is the most susceptible host plant species and the only species susceptible to isolates from all three lineages. The establishment of large agricultural populations of highly susceptible C. sativus in temperate eastern North America may have facilitated the original emergence of E. tracheiphila into cucurbit agroecosystems, and this introduced plant species may now be acting as a highly susceptible reservoir host. Our findings have broad implications for agricultural sustainability by drawing attention to how worldwide crop plant movement, agricultural intensification, and locally unique environments may affect the emergence, evolution, and epidemic persistence of virulent microbial pathogens.IMPORTANCEErwinia tracheiphila is a virulent phytopathogen that infects two genera of cucurbit crop plants, Cucurbita spp. (pumpkin and squash) and Cucumis spp. (muskmelon and cucumber). One of the unusual ecological traits of this pathogen is that it is limited to temperate eastern North America. Here, we complete the first large-scale sequencing of an E. tracheiphila isolate collection. From phylogenomic, comparative genomic, and empirical analyses, we find that introduced Cucumis spp. crop plants are driving the diversification of E. tracheiphila into multiple lineages. Together, the results from this study show that locally unique biotic (plant population) and abiotic (climate) conditions can drive the evolutionary trajectories of locally endemic pathogens in unexpected ways. Copyright © 2018 Shapiro et al.


September 22, 2019

Characterization of the lytic bacteriophage phiEaP-8 effective against both Erwinia amylovora and Erwinia pyrifoliae causing severe diseases in apple and pear.

Bacteriophages, bacteria-infecting viruses, have been recently reconsidered as a biological control tool for preventing bacterial pathogens. Erwinia amylovora and E. pyrifoliae cause fire blight and black shoot blight disease in apple and pear, respectively. In this study, the bacteriophage phiEaP-8 was isolated from apple orchard soil and could efficiently and specifically kill both E. amylovora and E. pyrifoliae. This bacteriophage belongs to the Podoviridae family. Whole genome analysis revealed that phiEaP-8 carries a 75,929 bp genomic DNA with 78 coding sequences and 5 tRNA genes. Genome comparison showed that phiEaP-8 has only 85% identity to known bacteriophages at the DNA level. PhiEaP-8 retained lytic activity up to 50°C, within a pH range from 5 to 10, and under 365 nm UV light. Based on these characteristics, the bacteriophage phiEaP-8 is novel and carries potential to control both E. amylovora and E. pyrifoliae in apple and pear.


September 22, 2019

Complete genome sequence and characterization of linezolid-resistant Enterococcus faecalis clinical isolate KUB3006 carrying a cfr(B)-transposon on its chromosome and optrA-plasmid.

Linezolid (LZD) has become one of the most important antimicrobial agents for infections caused by gram-positive bacteria, including those caused by Enterococcus species. LZD-resistant (LR) genetic features include mutations in 23S rRNA/ribosomal proteins, a plasmid-borne 23S rRNA methyltransferase gene cfr, and ribosomal protection genes (optrA and poxtA). Recently, a cfr gene variant, cfr(B), was identified in a Tn6218-like transposon (Tn) in a Clostridioides difficile isolate. Here, we isolated an LR Enterococcus faecalis clinical isolate, KUB3006, from a urine specimen of a patient with urinary tract infection during hospitalization in 2017. Comparative and whole-genome analyses were performed to characterize the genetic features and overall antimicrobial resistance genes in E. faecalis isolate KUB3006. Complete genome sequencing of KUB3006 revealed that it carried cfr(B) on a chromosomal Tn6218-like element. Surprisingly, this Tn6218-like element was almost (99%) identical to that of C. difficile Ox3196, which was isolated from a human in the UK in 2012, and to that of Enterococcus faecium 5_Efcm_HA-NL, which was isolated from a human in the Netherlands in 2012. An additional oxazolidinone and phenicol resistance gene, optrA, was also identified on a plasmid. KUB3006 is sequence type (ST) 729, suggesting that it is a minor ST that has not been reported previously and is unlikely to be a high-risk E. faecalis lineage. In summary, LR E. faecalis KUB3006 possesses a notable Tn6218-like-borne cfr(B) and a plasmid-borne optrA. This finding raises further concerns regarding the potential declining effectiveness of LZD treatment in the future.


September 22, 2019

Characterization and genomic analyses of Pseudomonas aeruginosa podovirus TC6: establishment of genus Pa11virus.

Phages have attracted a renewed interest as alternative to chemical antibiotics. Although the number of phages is 10-fold higher than that of bacteria, the number of genomically characterized phages is far less than that of bacteria. In this study, phage TC6, a novel lytic virus of Pseudomonas aeruginosa, was isolated and characterized. TC6 consists of an icosahedral head with a diameter of approximately 54 nm and a short tail with a length of about 17 nm, which are characteristics of the family Podoviridae. TC6 can lyse 86 out of 233 clinically isolated P. aeruginosa strains, thus showing application potentials for phage therapy. The linear double-stranded genomic DNA of TC6 consisted of 49796 base pairs and was predicted to contain 71 protein-coding genes. A total of 11 TC6 structural proteins were identified by mass spectrometry. Comparative analysis revealed that the P. aeruginosa phages TC6, O4, PA11, and IME180 shared high similarity at DNA sequence and proteome levels, among which PA11 was the first phage discovered and published. Meanwhile, these phages contain 54 core genes and have very close phylogenetic relationships, which distinguish them from other known phage genera. We therefore proposed that these four phages can be classified as Pa11virus, comprising a new phage genus of Podoviridae that infects Pseudomonas spp. The results of this work promoted our understanding of phage biology, classification, and diversity.


September 22, 2019

Therapeutic potential of a new jumbo phage that infects Vibrio coralliilyticus, a widespread coral pathogen.

Biological control using bacteriophages is a promising approach for mitigating the devastating effects of coral diseases. Several phages that infect Vibrio coralliilyticus, a widespread coral pathogen, have been isolated, suggesting that this bacterium is permissive to viral infection and is, therefore, a suitable candidate for treatment by phage therapy. In this study, we combined functional and genomic approaches to evaluate the therapeutic potential of BONAISHI, a novel V. coralliilyticus phage, which was isolated from the coral reef in Van Phong Bay (Vietnam). BONAISHI appears to be strictly lytic for several pathogenic strains of V. coralliilyticus and remains infectious over a broad range of environmental conditions. This candidate has an unusually large dsDNA genome (303 kb), with no genes that encode known toxins or implicated in lysogeny control. We identified several proteins involved in host lysis, which may offer an interesting alternative to the use of whole bacteriophages for controlling V. coralliilyticus. A preliminary therapy test showed that adding BONAISHI to an infected culture of Symbiodinium sp. cells reduced the impact of V. coralliilyticus on Symbiodinium sp. photosynthetic activity. This study showed that BONAISHI is able to mitigate V. coralliilyticus infections, making it a good candidate for phage therapy for coral disease.


September 22, 2019

Whole-Genome Analysis of an Extensively Drug-Resistant Acinetobacter baumannii Strain XDR-BJ83: Insights into the Mechanisms of Resistance of an ST368 Strain from a Tertiary Care Hospital in China.

Acinetobacter baumannii is an important pathogen of nosocomial infections. Nosocomial outbreaks caused by antibiotic-resistant A. baumannii remain a significant challenge. Understanding the antibiotic resistance mechanism of A. baumannii is critical for clinical treatment. The purpose of this study was to determine the whole-genome sequence (WGS) of an extensively drug-resistant (XDR) A. baumannii strain, XDR-BJ83, which was associated with a nosocomial outbreak in a tertiary care hospital of China, and to investigate the antibiotic resistance mechanism of this strain. The WGS of XDR-BJ83 was performed using single-molecule real-time sequencing. The complete genome of XDR-BJ83 consisted of a 4,011,552-bp chromosome and a 69,069-bp plasmid. The sequence type of XDR-BJ83 was ST368, which belongs to clonal complex 92 (CC92). The chromosome of XDR-BJ83 carried multiple antibiotic resistance genes, antibiotic efflux pump genes, and mobile genetic elements, including insertion sequences, transposons, integrons, and resistance islands. The plasmid of XDR-BJ83 (pBJ83) was a conjugative plasmid carrying type IV secretion system. These results indicate that the presence of multiple antibiotic resistance genes, efflux pumps, and mobile genetic elements is likely associated with resistance to various antibiotics in XDR-BJ83.


September 22, 2019

Thermosipho spp. immune system differences affect variation in genome size and geographical distributions.

Thermosipho species inhabit thermal environments such as marine hydrothermal vents, petroleum reservoirs, and terrestrial hot springs. A 16S rRNA phylogeny of available Thermosipho spp. sequences suggested habitat specialists adapted to living in hydrothermal vents only, and habitat generalists inhabiting oil reservoirs, hydrothermal vents, and hotsprings. Comparative genomics of 15 Thermosipho genomes separated them into three distinct species with different habitat distributions: The widely distributed T. africanus and the more specialized, T. melanesiensis and T. affectus. Moreover, the species can be differentiated on the basis of genome size (GS), genome content, and immune system composition. For instance, the T. africanus genomes are largest and contained the most carbohydrate metabolism genes, which could explain why these isolates were obtained from ecologically more divergent habitats. Nonetheless, all the Thermosipho genomes, like other Thermotogae genomes, show evidence of genome streamlining. GS differences between the species could further be correlated to differences in defense capacities against foreign DNA, which influence recombination via HGT. The smallest genomes are found in T. affectus that contain both CRISPR-cas Type I and III systems, but no RM system genes. We suggest that this has caused these genomes to be almost devoid of mobile elements, contrasting the two other species genomes that contain a higher abundance of mobile elements combined with different immune system configurations. Taken together, the comparative genomic analyses of Thermosipho spp. revealed genetic variation allowing habitat differentiation within the genus as well as differentiation with respect to invading mobile DNA.


September 22, 2019

Computational tools to unmask transposable elements.

A substantial proportion of the genome of many species is derived from transposable elements (TEs). Moreover, through various self-copying mechanisms, TEs continue to proliferate in the genomes of most species. TEs have contributed numerous regulatory, transcript and protein innovations and have also been linked to disease. However, notwithstanding their demonstrated impact, many genomic studies still exclude them because their repetitive nature results in various analytical complexities. Fortunately, a growing array of methods and software tools are being developed to cater for them. This Review presents a summary of computational resources for TEs and highlights some of the challenges and remaining gaps to perform comprehensive genomic analyses that do not simply ‘mask’ repeats.


September 22, 2019

Functional metagenomics identifies an exosialidase with an inverting catalytic mechanism that defines a new glycoside hydrolase family (GH156).

Exosialidases are glycoside hydrolases that remove a single terminal sialic acid residue from oligosaccharides. They are widely distributed in biology, having been found in prokaryotes, eukaryotes, and certain viruses. Most characterized prokaryotic sialidases are from organisms that are pathogenic or commensal with mammals. However, in this study, we used functional metagenomic screening to seek microbial sialidases encoded by environmental DNA isolated from an extreme ecological niche, a thermal spring. Using recombinant expression of potential exosialidase candidates and a fluorogenic sialidase substrate, we discovered an exosialidase having no homology to known sialidases. Phylogenetic analysis indicated that this protein is a member of a small family of bacterial proteins of previously unknown function. Proton NMR revealed that this enzyme functions via an inverting catalytic mechanism, a biochemical property that is distinct from those of known exosialidases. This unique inverting exosialidase defines a new CAZy glycoside hydrolase family we have designated GH156.© 2018 Chuzel et al.


September 22, 2019

Comprehensive profiling of four base overhang ligation fidelity by T4 DNA Ligase and application to DNA assembly.

Synthetic biology relies on the manufacture of large and complex DNA constructs from libraries of genetic parts. Golden Gate and other Type IIS restriction enzyme-dependent DNA assembly methods enable rapid construction of genes and operons through one-pot, multifragment assembly, with the ordering of parts determined by the ligation of Watson-Crick base-paired overhangs. However, ligation of mismatched overhangs leads to erroneous assembly, and low-efficiency Watson Crick pairings can lead to truncated assemblies. Using sets of empirically vetted, high-accuracy junction pairs avoids this issue but limits the number of parts that can be joined in a single reaction. Here, we report the use of comprehensive end-joining ligation fidelity and bias data to predict high accuracy junction sets for Golden Gate assembly. The ligation profile accurately predicted junction fidelity in ten-fragment Golden Gate assembly reactions and enabled accurate and efficient assembly of a lac cassette from up to 24-fragments in a single reaction.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.