Menu
September 22, 2019

Global identification of alternative splicing via comparative analysis of SMRT- and Illumina-based RNA-seq in strawberry.

Alternative splicing (AS) is a key post-transcriptional regulatory mechanism, yet little information is known about its roles in fruit crops. Here, AS was globally analyzed in the wild strawberry Fragaria vesca genome with RNA-seq data derived from different stages of fruit development. The AS landscape was characterized and compared between the single-molecule, real-time (SMRT) and Illumina RNA-seq platform. While SMRT has a lower sequencing depth, it identifies more genes undergoing AS (57.67% of detected multiexon genes) when it is compared with Illumina (33.48%), illustrating the efficacy of SMRT in AS identification. We investigated different modes of AS in the context of fruit development; the percentage of intron retention (IR) is markedly reduced whereas that of alternative acceptor sites (AA) is significantly increased post-fertilization when compared with pre-fertilization. When all the identified transcripts were combined, a total of 66.43% detected multiexon genes in strawberry undergo AS, some of which lead to a gain or loss of conserved domains in the gene products. The work demonstrates that SMRT sequencing is highly powerful in AS discovery and provides a rich data resource for later functional studies of different isoforms. Further, shifting AS modes may contribute to rapid changes of gene expression during fruit set.© 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.


September 22, 2019

Introduction to isoform sequencing using Pacific Biosciences technology (Iso-Seq)

Alternative RNA splicing is a known phenomenon, but we still do not have a complete catalog of isoforms that explain variability in the human transcriptome. We have made significant progress in developing methods to study variability of the transcriptome, but we are far away of having a complete picture of the transcriptome. The initial methods to study gene expression were based on cloning of cDNAs and Sanger sequencing. The strategy was labor-intensive and expensive. With the development of microarrays, different methods based on exon arrays and tiling arrays provided valuable information about RNA expression. However, the microarray presented significant limitations. Most of the limitations became apparent by 2005, but it was not until 2008 that an alternative method to study the transcriptome was developed. RNA Sequencing using next-generation sequencing (RNA-Seq) quickly became the technology of choice for gene expression profiling. Recently, the precision and sensitivity of RNA-Seq have come into question, especially for transcriptome reconstruction. This chapter will describe a relatively new method, “Isoform Sequencing (Iso-Seq). Iso-Seq was developed by Pacific Biosciences (PacBio), and it is capable of identifying new isoforms with extraordinary precision due to its long-read technology. The technique to create libraries is straightforward, and the PacBio RS II instrument generates the information in hours. The bioinformatics analysis is performed using the freely available SMRT® Portal software. The SMRT Portal is easy to use and capable of performing all the steps necessary to analyze the raw data and to generate high-quality full-length isoforms. For the universal acceptance of the Iso-Seq method, the capacity of the SMRT Cells needs to improve at least 10- to 100-fold to make the system affordable and attractive to users.


September 22, 2019

Transcript profiling of a bitter variety of narrow-leafed lupin to discover alkaloid biosynthetic genes.

Lupins (Lupinus spp.) are nitrogen-fixing legumes that accumulate toxic alkaloids in their protein-rich beans. These anti-nutritional compounds belong to the family of quinolizidine alkaloids (QAs), which are of interest to the pharmaceutical and chemical industries. To unleash the potential of lupins as protein crops and as sources of QAs, a thorough understanding of the QA pathway is needed. However, only the first enzyme in the pathway, lysine decarboxylase (LDC), is known. Here, we report the transcriptome of a high-QA variety of narrow-leafed lupin (L. angustifolius), obtained using eight different tissues and two different sequencing technologies. In addition, we present a list of 33 genes that are closely co-expressed with LDC and that represent strong candidates for involvement in lupin alkaloid biosynthesis. One of these genes encodes a copper amine oxidase able to convert the product of LDC, cadaverine, into 1-piperideine, as shown by heterologous expression and enzyme assays. Kinetic analysis revealed a low KM value for cadaverine, supporting a role as the second enzyme in the QA pathway. Our transcriptomic data set represents a crucial step towards the discovery of enzymes, transporters, and regulators involved in lupin alkaloid biosynthesis.© The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.


September 22, 2019

Computational analysis of alternative splicing in plant genomes.

Computational analyses play crucial roles in characterizing splicing isoforms in plant genomes. In this review, we provide a survey of computational tools used in recently published, genome-scale splicing analyses in plants. We summarize the commonly used software and pipelines for read mapping, isoform reconstruction, isoform quantification, and differential expression analysis. We also discuss methods for analyzing long reads and the strategies to combine long and short reads in identifying splicing isoforms. We review several tools for characterizing local splicing events, splicing graphs, coding potential, and visualizing splicing isoforms. We further discuss the procedures for identifying conserved splicing isoforms across plant species. Finally, we discuss the outlook of integrating other genomic data with splicing analyses to identify regulatory mechanisms of AS on genome-wide scale. Copyright © 2018 Elsevier B.V. All rights reserved.


September 22, 2019

Widespread polycistronic transcripts in fungi revealed by single-molecule mRNA sequencing.

Genes in prokaryotic genomes are often arranged into clusters and co-transcribed into polycistronic RNAs. Isolated examples of polycistronic RNAs were also reported in some higher eukaryotes but their presence was generally considered rare. Here we developed a long-read sequencing strategy to identify polycistronic transcripts in several mushroom forming fungal species including Plicaturopsis crispa, Phanerochaete chrysosporium, Trametes versicolor, and Gloeophyllum trabeum. We found genome-wide prevalence of polycistronic transcription in these Agaricomycetes, involving up to 8% of the transcribed genes. Unlike polycistronic mRNAs in prokaryotes, these co-transcribed genes are also independently transcribed. We show that polycistronic transcription may interfere with expression of the downstream tandem gene. Further comparative genomic analysis indicates that polycistronic transcription is conserved among a wide range of mushroom forming fungi. In summary, our study revealed, for the first time, the genome prevalence of polycistronic transcription in a phylogenetic range of higher fungi. Furthermore, we systematically show that our long-read sequencing approach and combined bioinformatics pipeline is a generic powerful tool for precise characterization of complex transcriptomes that enables identification of mRNA isoforms not recovered via short-read assembly.


September 22, 2019

Genome and evolution of the shade-requiring medicinal herb Panax ginseng.

Panax ginseng C. A. Meyer, reputed as the king of medicinal herbs, has slow growth, long generation time, low seed production and complicated genome structure that hamper its study. Here, we unveil the genomic architecture of tetraploid P. ginseng by de novo genome assembly, representing 2.98 Gbp with 59 352 annotated genes. Resequencing data indicated that diploid Panax species diverged in association with global warming in Southern Asia, and two North American species evolved via two intercontinental migrations. Two whole genome duplications (WGD) occurred in the family Araliaceae (including Panax) after divergence with the Apiaceae, the more recent one contributing to the ability of P. ginseng to overwinter, enabling it to spread broadly through the Northern Hemisphere. Functional and evolutionary analyses suggest that production of pharmacologically important dammarane-type ginsenosides originated in Panax and are produced largely in shoot tissues and transported to roots; that newly evolved P. ginseng fatty acid desaturases increase freezing tolerance; and that unprecedented retention of chlorophyll a/b binding protein genes enables efficient photosynthesis under low light. A genome-scale metabolic network provides a holistic view of Panax ginsenoside biosynthesis. This study provides valuable resources for improving medicinal values of ginseng either through genomics-assisted breeding or metabolic engineering.© 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.


September 22, 2019

Integrative analysis of three RNA sequencing methods identifies mutually exclusive exons of MADS-box isoforms during early bud development in Picea abies.

Recent efforts to sequence the genomes and transcriptomes of several gymnosperm species have revealed an increased complexity in certain gene families in gymnosperms as compared to angiosperms. One example of this is the gymnosperm sister clade to angiosperm TM3-like MADS-box genes, which at least in the conifer lineage has expanded in number of genes. We have previously identified a member of this sub-clade, the conifer gene DEFICIENS AGAMOUS LIKE 19 (DAL19), as being specifically upregulated in cone-setting shoots. Here, we show through Sanger sequencing of mRNA-derived cDNA and mapping to assembled conifer genomic sequences that DAL19 produces six mature mRNA splice variants in Picea abies. These splice variants use alternate first and last exons, while their four central exons constitute a core region present in all six transcripts. Thus, they are likely to be transcript isoforms. Quantitative Real-Time PCR revealed that two mutually exclusive first DAL19 exons are differentially expressed across meristems that will form either male or female cones, or vegetative shoots. Furthermore, mRNA in situ hybridization revealed that two mutually exclusive last DAL19 exons were expressed in a cell-specific pattern within bud meristems. Based on these findings in DAL19, we developed a sensitive approach to transcript isoform assembly from short-read sequencing of mRNA. We applied this method to 42 putative MADS-box core regions in P. abies, from which we assembled 1084 putative transcripts. We manually curated these transcripts to arrive at 933 assembled transcript isoforms of 38 putative MADS-box genes. 152 of these isoforms, which we assign to 28 putative MADS-box genes, were differentially expressed across eight female, male, and vegetative buds. We further provide evidence of the expression of 16 out of the 38 putative MADS-box genes by mapping PacBio Iso-Seq circular consensus reads derived from pooled sample sequencing to assembled transcripts. In summary, our analyses reveal the use of mutually exclusive exons of MADS-box gene isoforms during early bud development in P. abies, and we find that the large number of identified MADS-box transcripts in P. abies results not only from expansion of the gene family through gene duplication events but also from the generation of numerous splice variants.


September 22, 2019

Integrated DNA methylome and transcriptome analysis reveals the ethylene-induced flowering pathway genes in pineapple.

Ethylene has long been used to promote flowering in pineapple production. Ethylene-induced flowering is dose dependent, with a critical threshold level of ethylene response factors needed to trigger flowering. The mechanism of ethylene-induced flowering is still unclear. Here, we integrated isoform sequencing (iso-seq), Illumina short-reads sequencing and whole-genome bisulfite sequencing (WGBS) to explore the early changes of transcriptomic and DNA methylation in pineapple following high-concentration ethylene (HE) and low-concentration ethylene (LE) treatment. Iso-seq produced 122,338 transcripts, including 26,893 alternative splicing isoforms, 8,090 novel transcripts and 12,536 candidate long non-coding RNAs. The WGBS results suggested a decrease in CG methylation and increase in CHH methylation following HE treatment. The LE and HE treatments induced drastic changes in transcriptome and DNA methylome, with LE inducing the initial response to flower induction and HE inducing the subsequent response. The dose-dependent induction of FLOWERING LOCUS T-like genes (FTLs) may have contributed to dose-dependent flowering induction in pineapple by ethylene. Alterations in DNA methylation, lncRNAs and multiple genes may be involved in the regulation of FTLs. Our data provided a landscape of the transcriptome and DNA methylome and revealed a candidate network that regulates flowering time in pineapple, which may promote further studies.


September 22, 2019

Extensive allele-specific translational regulation in hybrid mice.

Translational regulation is mediated through the interaction between diffusible trans-factors and cis-elements residing within mRNA transcripts. In contrast to extensively studied transcriptional regulation, cis-regulation on translation remains underexplored. Using deep sequencing-based transcriptome and polysome profiling, we globally profiled allele-specific translational efficiency for the first time in an F1 hybrid mouse. Out of 7,156 genes with reliable quantification of both alleles, we found 1,008 (14.1%) exhibiting significant allelic divergence in translational efficiency. Systematic analysis of sequence features of the genes with biased allelic translation revealed that local RNA secondary structure surrounding the start codon and proximal out-of-frame upstream AUGs could affect translational efficiency. Finally, we observed that the cis-effect was quantitatively comparable between transcriptional and translational regulation. Such effects in the two regulatory processes were more frequently compensatory, suggesting that the regulation at the two levels could be coordinated in maintaining robustness of protein expression. © 2015 The Authors. Published under the terms of the CC BY 4.0 license.


September 22, 2019

Transcriptome-referenced association study of clove shape traits in garlic.

Genome-wide association studies are a powerful approach for identifying genes related to complex traits in organisms, but are limited by the requirement for a reference genome sequence of the species under study. To circumvent this problem, we propose a transcriptome-referenced association study (TRAS) that utilizes a transcriptome generated by single-molecule long-read sequencing as a reference sequence to score population variation at both transcript sequence and expression levels. Candidate transcripts are identified when both scores are associated with a trait and their potential interactions are ascertained by expression quantitative trait loci analysis. Applying this method to characterize garlic clove shape traits in 102 landraces, we identified 22 candidate transcripts, most of which showed extensive interactions. Eight transcripts were long non-coding RNAs (lncRNAs), and the others were proteins involved mainly in carbohydrate metabolism, protein degradation, etc. TRAS, as an efficient tool for association study independent of a reference genome, extends the applicability of association studies to a broad range of species.


September 22, 2019

Proteogenomic analysis reveals alternative splicing and translation as part of the abscisic acid response in Arabidopsis seedlings.

In eukaryotes, mechanisms such as alternative splicing (AS) and alternative translation initiation (ATI) contribute to organismal protein diversity. Specifically, splicing factors play crucial roles in responses to environment and development cues; however, the underlying mechanisms are not well investigated in plants. Here, we report the parallel employment of short-read RNA sequencing, single molecule long-read sequencing and proteomic identification to unravel AS isoforms and previously unannotated proteins in response to abscisic acid (ABA) treatment. Combining the data from the two sequencing methods, approximately 83.4% of intron-containing genes were alternatively spliced. Two AS types, which are referred to as alternative first exon (AFE) and alternative last exon (ALE), were more abundant than intron retention (IR); however, by contrast to AS events detected under normal conditions, differentially expressed AS isoforms were more likely to be translated. ABA extensively affects the AS pattern, indicated by the increasing number of non-conventional splicing sites. This work also identified thousands of unannotated peptides and proteins by ATI based on mass spectrometry and a virtual peptide library deduced from both strands of coding regions within the Arabidopsis genome. The results enhance our understanding of AS and alternative translation mechanisms under normal conditions, and in response to ABA treatment.© 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.


September 22, 2019

High-resolution expression map of the Arabidopsis root reveals alternative splicing and lincRNA regulation.

The extent to which alternative splicing and long intergenic noncoding RNAs (lincRNAs) contribute to the specialized functions of cells within an organ is poorly understood. We generated a comprehensive dataset of gene expression from individual cell types of the Arabidopsis root. Comparisons across cell types revealed that alternative splicing tends to remove parts of coding regions from a longer, major isoform, providing evidence for a progressive mechanism of splicing. Cell-type-specific intron retention suggested a possible origin for this common form of alternative splicing. Coordinated alternative splicing across developmental stages pointed to a role in regulating differentiation. Consistent with this hypothesis, distinct isoforms of a transcription factor were shown to control developmental transitions. lincRNAs were generally lowly expressed at the level of individual cell types, but co-expression clusters provided clues as to their function. Our results highlight insights gained from analysis of expression at the level of individual cell types. Copyright © 2016 Elsevier Inc. All rights reserved.


September 22, 2019

Next generation sequencing technology: Advances and applications.

Impressive progress has been made in the field of Next Generation Sequencing (NGS). Through advancements in the fields of molecular biology and technical engineering, parallelization of the sequencing reaction has profoundly increased the total number of produced sequence reads per run. Current sequencing platforms allow for a previously unprecedented view into complex mixtures of RNA and DNA samples. NGS is currently evolving into a molecular microscope finding its way into virtually every fields of biomedical research. In this chapter we review the technical background of the different commercially available NGS platforms with respect to template generation and the sequencing reaction and take a small step towards what the upcoming NGS technologies will bring. We close with an overview of different implementations of NGS into biomedical research. This article is part of a Special Issue entitled: From Genome to Function. Copyright © 2014 Elsevier B.V. All rights reserved.


September 22, 2019

Hybrid sequencing of full-length cDNA transcripts of stems and leaves in Dendrobium officinale.

Dendrobium officinale is an extremely valuable orchid used in traditional Chinese medicine, so sought after that it has a higher market value than gold. Although the expression profiles of some genes involved in the polysaccharide synthesis have previously been investigated, little research has been carried out on their alternatively spliced isoforms in D. officinale. In addition, information regarding the translocation of sugars from leaves to stems in D. officinale also remains limited. We analyzed the polysaccharide content of D. officinale leaves and stems, and completed in-depth transcriptome sequencing of these two diverse tissue types using second-generation sequencing (SGS) and single-molecule real-time (SMRT) sequencing technology. The results of this study yielded a digital inventory of gene and mRNA isoform expressions. A comparative analysis of both transcriptomes uncovered a total of 1414 differentially expressed genes, including 844 that were up-regulated and 570 that were down-regulated in stems. Of these genes, one sugars will eventually be exported transporter (SWEET) and one sucrose transporter (SUT) are expressed to a greater extent in D. officinale stems than in leaves. Two glycosyltransferase (GT) and four cellulose synthase (Ces) genes undergo a distinct degree of alternative splicing. In the stems, the content of polysaccharides is twice as much as that in the leaves. The differentially expressed GT and transcription factor (TF) genes will be the focus of further study. The genes DoSWEET4 and DoSUT1 are significantly expressed in the stem, and are likely to be involved in sugar loading in the phloem.


September 22, 2019

Defining cell identity with single cell omics.

Cells are a fundamental unit of life, and the ability to study the phenotypes and behaviors of individual cells is crucial to understanding the workings of complex biological systems. Cell phenotypes (epigenomic, transcriptomic, proteomic, and metabolomic) exhibit dramatic heterogeneity between and within the different cell types and states underlying cellular functional diversity. Cell genotypes can also display heterogeneity throughout an organism, in the form of somatic genetic variation-most notably in the emergence and evolution of tumors. Recent technical advances in single-cell isolation and the development of omics approaches sensitive enough to reveal these aspects of cell identity have enabled a revolution in the study of multicellular systems. In this review, we discuss the technologies available to resolve the genomes, epigenomes, transcriptomes, proteomes, and metabolomes of single cells from a wide variety of living systems.© 2018 The Authors. Proteomics Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.