Menu
July 7, 2019

Complete genome sequence of a Burkholderia mallei isolate originating from a glanderous horse from the Kingdom of Bahrain.

Burkholderia mallei is a zoonotic agent causing glanders, a notifiable disease in equines. During the past decades glanders emerged, and the Kingdom of Bahrain reported outbreaks to the World Organization of Animal Health in 2010 and 2011. This paper presents the complete genome sequence of the Burkholderia mallei strain 11RR2811 Bahrain1. Copyright © 2016 Elschner et al.


July 7, 2019

Complete genome sequence of a copper-resistant bacterium from the citrus phyllosphere, Stenotrophomonas sp. strain LM091, obtained using long-read technology.

The Stenotrophomonas genus shows great adaptive potential including resistance to multiple antimicrobials, opportunistic pathogenicity, and production of numerous secondary metabolites. Using long-read technology, we report the sequence of a plant-associated Stenotrophomonas strain originating from the citrus phyllosphere that displays a copper resistance phenotype. Copyright © 2016 Richard et al.


July 7, 2019

Complete genome anatomy of the emerging potato pathogen Dickeya solani type strain IPO 2222(T).

Several species of the genus Dickeya provoke soft rot and blackleg diseases on a wide range of plants and crops. Dickeya solani has been identified as the causative agent of diseases outbreaks on potato culture in Europe for the last decade. Here, we report the complete genome of the D. solani IPO 2222(T). Using PacBio and Illumina technologies, a unique circular chromosome of 4,919,833 bp was assembled. The G?+?C content reaches 56% and the genomic sequence contains 4,059 predicted proteins. The ANI values calculated for D. solani IPO 2222(T) vs. other available D. solani genomes was over 99.9% indicating a high genetic homogeneity within D. solani species.


July 7, 2019

Use of single molecule sequencing for comparative genomics of an environmental and a clinical isolate of Clostridium difficile ribotype 078.

How the pathogen Clostridium difficile might survive, evolve and be transferred between reservoirs within the natural environment is poorly understood. Some ribotypes are found both in clinical and environmental settings. Whether these strains are distinct from each another and evolve in the specific environments is not established. The possession of a highly mobile genome has contributed to the genetic diversity and ongoing evolution of C. difficile. Interpretations of genetic diversity have been limited by fragmented assemblies resulting from short-read length sequencing approaches and by a limited understanding of epigenetic regulation of diversity. To address this, single molecule real time (SMRT) sequencing was used in this study as it produces high quality genome sequences, with resolution of repeat regions (including those found in mobile elements) and can generate data to determine methylation modifications across the sequence (the methylome).Chromosomal rearrangements and ribosomal operon duplications were observed in both genomes. The rearrangements occurred at insertion sites within two mobile genetic elements (MGEs), Tn6164 and Tn6293, present only in the M120 and CD105HS27 genomes, respectively. The gene content of these two transposons differ considerably which could impact upon horizontal gene transfer; differences include CDSs encoding methylases and a conjugative prophage only in Tn6164. To investigate mechanisms which could affect MGE transfer, the methylome, restriction modification (RM)  and the CRISPR/Cas systems were characterised for each strain. Notably, the environmental isolate, CD105HS27, does not share a consensus motif for (m4)C methylation, but has one additional spacer  when compared to the clinical isolate M120.These findings show key differences between the two strains in terms of their genetic capacity for MGE transfer. The carriage of horizontally transferred genes appear to have genome wide effects based on two different methylation patterns. The CRISPR/Cas system appears active although perhaps slow to evolve. Data suggests that both mechanisms are functional and impact upon horizontal gene transfer and genome evolution within C. difficile.


July 7, 2019

The draft genome of whitefly Bemisia tabaci MEAM1, a global crop pest, provides novel insights into virus transmission, host adaptation, and insecticide resistance.

The whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) is among the 100 worst invasive species in the world. As one of the most important crop pests and virus vectors, B. tabaci causes substantial crop losses and poses a serious threat to global food security. We report the 615-Mb high-quality genome sequence of B. tabaci Middle East-Asia Minor 1 (MEAM1), the first genome sequence in the Aleyrodidae family, which contains 15,664 protein-coding genes. The B. tabaci genome is highly divergent from other sequenced hemipteran genomes, sharing no detectable synteny. A number of known detoxification gene families, including cytochrome P450s and UDP-glucuronosyltransferases, are significantly expanded in B. tabaci. Other expanded gene families, including cathepsins, large clusters of tandemly duplicated B. tabaci-specific genes, and phosphatidylethanolamine-binding proteins (PEBPs), were found to be associated with virus acquisition and transmission and/or insecticide resistance, likely contributing to the global invasiveness and efficient virus transmission capacity of B. tabaci. The presence of 142 horizontally transferred genes from bacteria or fungi in the B. tabaci genome, including genes encoding hopanoid/sterol synthesis and xenobiotic detoxification enzymes that are not present in other insects, offers novel insights into the unique biological adaptations of this insect such as polyphagy and insecticide resistance. Interestingly, two adjacent bacterial pantothenate biosynthesis genes, panB and panC, have been co-transferred into B. tabaci and fused into a single gene that has acquired introns during its evolution.The B. tabaci genome contains numerous genetic novelties, including expansions in gene families associated with insecticide resistance, detoxification and virus transmission, as well as numerous horizontally transferred genes from bacteria and fungi. We believe these novelties likely have shaped B. tabaci as a highly invasive polyphagous crop pest and efficient vector of plant viruses. The genome serves as a reference for resolving the B. tabaci cryptic species complex, understanding fundamental biological novelties, and providing valuable genetic information to assist the development of novel strategies for controlling whiteflies and the viruses they transmit.


July 7, 2019

Jabba: hybrid error correction for long sequencing reads.

Third generation sequencing platforms produce longer reads with higher error rates than second generation technologies. While the improved read length can provide useful information for downstream analysis, underlying algorithms are challenged by the high error rate. Error correction methods in which accurate short reads are used to correct noisy long reads appear to be attractive to generate high-quality long reads. Methods that align short reads to long reads do not optimally use the information contained in the second generation data, and suffer from large runtimes. Recently, a new hybrid error correcting method has been proposed, where the second generation data is first assembled into a de Bruijn graph, on which the long reads are then aligned.In this context we present Jabba, a hybrid method to correct long third generation reads by mapping them on a corrected de Bruijn graph that was constructed from second generation data. Unique to our method is the use of a pseudo alignment approach with a seed-and-extend methodology, using maximal exact matches (MEMs) as seeds. In addition to benchmark results, certain theoretical results concerning the possibilities and limitations of the use of MEMs in the context of third generation reads are presented.Jabba produces highly reliable corrected reads: almost all corrected reads align to the reference, and these alignments have a very high identity. Many of the aligned reads are error-free. Additionally, Jabba corrects reads using a very low amount of CPU time. From this we conclude that pseudo alignment with MEMs is a fast and reliable method to map long highly erroneous sequences on a de Bruijn graph.


July 7, 2019

A simple thermoplastic substrate containing hierarchical silica lamellae for high-molecular-weight DNA extraction.

An inexpensive, magnetic thermoplastic nanomaterial is developed utilizing a hierarchical layering of micro- and nanoscale silica lamellae to create a high-surface-area and low-shear substrate capable of capturing vast amounts of ultrahigh-molecular-weight DNA. Extraction is performed via a simple 45 min process and is capable of achieving binding capacities up to 1 000 000 times greater than silica microparticles. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.


July 7, 2019

CoLoRMap: Correcting Long Reads by Mapping short reads.

Second generation sequencing technologies paved the way to an exceptional increase in the number of sequenced genomes, both prokaryotic and eukaryotic. However, short reads are difficult to assemble and often lead to highly fragmented assemblies. The recent developments in long reads sequencing methods offer a promising way to address this issue. However, so far long reads are characterized by a high error rate, and assembling from long reads require a high depth of coverage. This motivates the development of hybrid approaches that leverage the high quality of short reads to correct errors in long reads.We introduce CoLoRMap, a hybrid method for correcting noisy long reads, such as the ones produced by PacBio sequencing technology, using high-quality Illumina paired-end reads mapped onto the long reads. Our algorithm is based on two novel ideas: using a classical shortest path algorithm to find a sequence of overlapping short reads that minimizes the edit score to a long read and extending corrected regions by local assembly of unmapped mates of mapped short reads. Our results on bacterial, fungal and insect data sets show that CoLoRMap compares well with existing hybrid correction methods.The source code of CoLoRMap is freely available for non-commercial use at https://github.com/sfu-compbio/colormapehaghshe@sfu.ca or cedric.chauve@sfu.caSupplementary data are available at Bioinformatics online.© The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.


July 7, 2019

Epigenetic mechanisms in microbial members of the human microbiota: current knowledge and perspectives.

The human microbiota and epigenetic processes have both been shown to play a crucial role in health and disease. However, there is extremely scarce information on epigenetic modulation of microbiota members except for a few pathogens. Mainly DNA adenine methylation has been described extensively in modulating the virulence of pathogenic bacteria in particular. It would thus appear likely that such mechanisms are widespread for most bacterial members of the microbiota. This review will present briefly the current knowledge on epigenetic processes in bacteria, give examples of known methylation processes in microbial members of the human microbiota and summarize the knowledge on regulation of host epigenetic processes by the human microbiota.


July 7, 2019

Genome-guided design of a defined mouse microbiota that confers colonization resistance against Salmonella enterica serovar Typhimurium.

Protection against enteric infections, also termed colonization resistance, results from mutualistic interactions of the host and its indigenous microbes. The gut microbiota of humans and mice is highly diverse and it is therefore challenging to assign specific properties to its individual members. Here, we have used a collection of murine bacterial strains and a modular design approach to create a minimal bacterial community that, once established in germ-free mice, provided colonization resistance against the human enteric pathogen Salmonella enterica serovar Typhimurium (S. Tm). Initially, a community of 12 strains, termed Oligo-Mouse-Microbiota (Oligo-MM(12)), representing members of the major bacterial phyla in the murine gut, was selected. This community was stable over consecutive mouse generations and provided colonization resistance against S. Tm infection, albeit not to the degree of a conventional complex microbiota. Comparative (meta)genome analyses identified functions represented in a conventional microbiome but absent from the Oligo-MM(12). By genome-informed design, we created an improved version of the Oligo-MM community harbouring three facultative anaerobic bacteria from the mouse intestinal bacterial collection (miBC) that provided conventional-like colonization resistance. In conclusion, we have established a highly versatile experimental system that showed efficacy in an enteric infection model. Thus, in combination with exhaustive bacterial strain collections and systems-based approaches, genome-guided design can be used to generate insights into microbe-microbe and microbe-host interactions for the investigation of ecological and disease-relevant mechanisms in the intestine.


July 7, 2019

Identification of a virulence determinant that is conserved in the Jawetz and Heyl biotypes of [Pasteurella] pneumotropica.

[Pasteurella] pneumotropica is a ubiquitous bacterium frequently isolated from laboratory rodents. Although this bacterium causes various diseases in immunosuppressed animals, little is known about major virulence factors and their roles in pathogenicity. To identify virulence factors, we sequenced the genome of [P.] pneumotropica biotype Heyl strain ATCC 12555, and compared the resulting non-contiguous draft genome sequence with the genome of biotype Jawetz strain ATCC 35149. Among a large number of genes encoding virulence-associated factors in both strains, four genes encoding for YadA-like proteins, which are known virulence factors that function in host cell adherence and invasion in many pathogens. In this study, we assessed YadA distribution and biological activity as an example of one of virulence-associated factor shared, with biotype Jawetz and Heyl. More than half of mouse isolates were found to have at least one of these genes; whereas, the majority of rat isolates did not. Autoagglutination activity, and ability to bind to mouse collagen type IV and mouse fibroblast cells, was significantly higher in YadA-positive than YadA-negative strains. To conclude, we identified a large number of candidate genes predicted to influence [P.] pneumotropica pathogenesis.© FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.


July 7, 2019

Genomic sequencing-based mutational enrichment analysis identifies motility genes in a genetically intractable gut microbe.

A major roadblock to understanding how microbes in the gastrointestinal tract colonize and influence the physiology of their hosts is our inability to genetically manipulate new bacterial species and experimentally assess the function of their genes. We describe the application of population-based genomic sequencing after chemical mutagenesis to map bacterial genes responsible for motility in Exiguobacterium acetylicum, a representative intestinal Firmicutes bacterium that is intractable to molecular genetic manipulation. We derived strong associations between mutations in 57 E. acetylicum genes and impaired motility. Surprisingly, less than half of these genes were annotated as motility-related based on sequence homologies. We confirmed the genetic link between individual mutations and loss of motility for several of these genes by performing a large-scale analysis of spontaneous suppressor mutations. In the process, we reannotated genes belonging to a broad family of diguanylate cyclases and phosphodiesterases to highlight their specific role in motility and assigned functions to uncharacterized genes. Furthermore, we generated isogenic strains that allowed us to establish that Exiguobacterium motility is important for the colonization of its vertebrate host. These results indicate that genetic dissection of a complex trait, functional annotation of new genes, and the generation of mutant strains to define the role of genes in complex environments can be accomplished in bacteria without the development of species-specific molecular genetic tools.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.