Menu
April 21, 2020

WGS of 1058 Enterococcus faecium from Copenhagen, Denmark, reveals rapid clonal expansion of vancomycin-resistant clone ST80 combined with widespread dissemination of a vanA-containing plasmid and acquisition of a heterogeneous accessory genome.

From 2012 to 2015, a sudden significant increase in vancomycin-resistant (vanA) Enterococcus faecium (VREfm) was observed in the Capital Region of Denmark. Clonal relatedness of VREfm and vancomycin-susceptible E. faecium (VSEfm) was investigated, transmission events between hospitals were identified and the pan-genome and plasmids from the largest VREfm clonal group were characterized.WGS of 1058 E. faecium isolates was carried out on the Illumina platform to perform SNP analysis and to identify the pan-genome. One isolate was also sequenced on the PacBio platform to close the genome. Epidemiological data were collected from laboratory information systems.Phylogeny of 892 VREfm and 166 VSEfm revealed a polyclonal structure, with a single clonal group (ST80) accounting for 40% of the VREfm isolates. VREfm and VSEfm co-occurred within many clonal groups; however, no VSEfm were related to the dominant VREfm group. A similar vanA plasmid was identified in =99% of isolates belonging to the dominant group and 69% of the remaining VREfm. Ten plasmids were identified in the completed genome, and ~29% of this genome consisted of dispensable accessory genes. The size of the pan-genome among isolates in the dominant group was 5905 genes.Most probably, VREfm emerged owing to importation of a successful VREfm clone which rapidly transmitted to the majority of hospitals in the region whilst simultaneously disseminating a vanA plasmid to pre-existing VSEfm. Acquisition of a heterogeneous accessory genome may account for the success of this clone by facilitating adaptation to new environmental challenges. © The Author(s) 2019. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For permissions, please email: journals.permissions@oup.com.


April 21, 2020

Analysis of a poxtA- and optrA-co-carrying conjugative multiresistance plasmid from Enterococcus faecalis.

To investigate the presence and transferability of the poxtA gene and identify the genetic context of poxtA in two enterococcal plasmids from swine.MICs were determined by broth microdilution. A total of 114 porcine enterococci with florfenicol MICs of =16?mg/L were screened for the presence of the poxtA gene by PCR. Transferability of poxtA was investigated by conjugation and transformation. The poxtA-carrying plasmids were completely sequenced using the Illumina Miseq and PacBio RSII platform. The presence of circular intermediates was examined by inverse PCR.The poxtA gene was present in 57.9% (66/114) of the florfenicol-resistant porcine enterococci. Two poxtA-carrying plasmids, pE035 and pE076, were identified. The conjugative 121524?bp plasmid pE035 carried poxtA and optrA along with the resistance genes erm(A), erm(B), aac(A)-aph(D), lnu(G), fexB, dfrG and bcrABDR. Three mobile elements, comprising a mobile dfrG locus, a mobile bcrABDR locus and an unconventional circularizable structure containing aac(A)-aph(D), were located on this plasmid and all proved to be active by inverse PCR. The non-conjugative 19832?bp plasmid pE076 only carried poxtA and fexB. After transfer, both the transconjugant and the transformant displayed elevated MICs of the respective antimicrobial agents.To the best of our knowledge, this is the first report of the co-location of the oxazolidinone resistance genes poxtA and optrA on a conjugative multiresistance plasmid from a porcine enterococcal strain. In addition, the presence of three mobile elements in such a plasmid will aid in the persistence and dissemination of poxtA and optrA among enterococci. © The Author(s) 2019. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For permissions, please email: journals.permissions@oup.com.


April 21, 2020

Xylella fastidiosa in Olive in Apulia: Where We Stand.

A dramatic outbreak of Xylella fastidiosa decimating olive was discovered in 2013 in Apulia, Southern Italy. This pathogen is a quarantine bacterium in the European Union (EU) and created unprecedented turmoil for the local economy and posed critical challenges for its management. With the new emerging threat to susceptible crops in the EU, efforts were devoted to gain basic knowledge on the pathogen biology, host, and environmental interactions (e.g., bacterial strain(s) and pathogenicity, hosts, vector(s), and fundamental drivers of its epidemics) in order to find means to control or mitigate the impacts of the infections. Field surveys, greenhouse tests, and laboratory analyses proved that a single bacterial introduction occurred in the area, with a single genotype, belonging to the subspecies pauca, associated with the epidemic. Infections caused by isolates of this genotype turned to be extremely aggressive on the local olive cultivars, causing a new disease termed olive quick decline syndrome. Due to the initial extension of the foci and the rapid spread of the infections, eradication measures (i.e., pathogen elimination from the area) were soon replaced by containment measures including intense border surveys of the contaminated area, removal of infected trees, and mandatory vector control. However, implementation of containment measures encountered serious difficulties, including public reluctance to accept control measures, poor stakeholder cooperation, misinformation from some media outlets, and lack of robust responses by some governmental authorities. This scenario delayed and limited containment efforts and allowed the bacterium to continue its rapid dissemination over more areas in the region, as shown by the continuous expansion of the official borders of the infected area. At the research level, the European Commission and regional authorities are now supporting several programs aimed to find effective methods to mitigate and contain the impact of X. fastidiosa on olives, the predominant host affected in this epidemic. Preliminary evidence of the presence of resistance in some olive cultivars represents a promising approach currently under investigation for long-term management strategies. The present review describes the current status of the epidemic and major research achievements since 2013.


April 21, 2020

Sequential evolution of virulence and resistance during clonal spread of community-acquired methicillin-resistant Staphylococcus aureus.

The past two decades have witnessed an alarming expansion of staphylococcal disease caused by community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA). The factors underlying the epidemic expansion of CA-MRSA lineages such as USA300, the predominant CA-MRSA clone in the United States, are largely unknown. Previously described virulence and antimicrobial resistance genes that promote the dissemination of CA-MRSA are carried by mobile genetic elements, including phages and plasmids. Here, we used high-resolution genomics and experimental infections to characterize the evolution of a USA300 variant plaguing a patient population at increased risk of infection to understand the mechanisms underlying the emergence of genetic elements that facilitate clonal spread of the pathogen. Genetic analyses provided conclusive evidence that fitness (manifest as emergence of a dominant clone) changed coincidently with the stepwise emergence of (i) a unique prophage and mutation of the regulator of the pyrimidine nucleotide biosynthetic operon that promoted abscess formation and colonization, respectively, thereby priming the clone for success; and (ii) a unique plasmid that conferred resistance to two topical microbiocides, mupirocin and chlorhexidine, frequently used for decolonization and infection prevention. The resistance plasmid evolved through successive incorporation of DNA elements from non-S. aureus spp. into an indigenous cryptic plasmid, suggesting a mechanism for interspecies genetic exchange that promotes antimicrobial resistance. Collectively, the data suggest that clonal spread in a vulnerable population resulted from extensive clinical intervention and intense selection pressure toward a pathogen lifestyle that involved the evolution of consequential mutations and mobile genetic elements.


April 21, 2020

Plastid genomes from diverse glaucophyte genera reveal a largely conserved gene content and limited architectural diversity.

Plastid genome (ptDNA) data of Glaucophyta have been limited for many years to the genus Cyanophora. Here, we sequenced the ptDNAs of Gloeochaete wittrockiana, Cyanoptyche gloeocystis, Glaucocystis incrassata, and Glaucocystis sp. BBH. The reported sequences are the first genome-scale plastid data available for these three poorly studied glaucophyte genera. Although the Glaucophyta plastids appear morphologically “ancestral,” they actually bear derived genomes not radically different from those of red algae or viridiplants. The glaucophyte plastid coding capacity is highly conserved (112 genes shared) and the architecture of the plastid chromosomes is relatively simple. Phylogenomic analyses recovered Glaucophyta as the earliest diverging Archaeplastida lineage, but the position of viridiplants as the first branching group was not rejected by the approximately unbiased test. Pairwise distances estimated from 19 different plastid genes revealed that the highest sequence divergence between glaucophyte genera is frequently higher than distances between species of different classes within red algae or viridiplants. Gene synteny and sequence similarity in the ptDNAs of the two Glaucocystis species analyzed is conserved. However, the ptDNA of Gla. incrassata contains a 7.9-kb insertion not detected in Glaucocystis sp. BBH. The insertion contains ten open reading frames that include four coding regions similar to bacterial serine recombinases (two open reading frames), DNA primases, and peptidoglycan aminohydrolases. These three enzymes, often encoded in bacterial plasmids and bacteriophage genomes, are known to participate in the mobilization and replication of DNA mobile elements. It is therefore plausible that the insertion in Gla. incrassata ptDNA is derived from a DNA mobile element.


April 21, 2020

Genome structure and evolution of Antirrhinum majus L.

Snapdragon (Antirrhinum majus L.), a member of the Plantaginaceae family, is an important model for plant genetics and molecular studies on plant growth and development, transposon biology and self-incompatibility. Here we report a near-complete genome assembly of A. majus cultivar JI7 (A. majus cv.JI7) comprising 510?Megabases (Mb) of genomic sequence and containing 37,714 annotated protein-coding genes. Scaffolds covering 97.12% of the assembled genome were anchored on eight chromosomes. Comparative and evolutionary analyses revealed that a whole-genome duplication event occurred in the Plantaginaceae around 46-49 million years ago (Ma). We also uncovered the genetic architectures associated with complex traits such as flower asymmetry and self-incompatibility, identifying a unique duplication of TCP family genes dated to around 46-49 Ma and reconstructing a near-complete ?S-locus of roughly 2?Mb. The genome sequence obtained in this study not only provides a representative genome sequenced from the Plantaginaceae but also brings the popular plant model system of Antirrhinum into the genomic age.


April 21, 2020

Whole-Genome Analysis of Halomonas sp. Soap Lake #7 Reveals It Possesses Putative Mrp Antiporter Operon Groups 1 and 2.

The genus Halomonas possesses bacteria that are halophilic or halotolerant and exhibit a wide range of pH tolerance. The genome of Halomonas sp. Soap Lake #7 was sequenced to provide a better understanding of the mechanisms for salt and pH tolerance in this genus. The bacterium’s genome was found to possess two complete multiple resistance and pH antiporter systems, Group 1 and Group 2. This is the first report of both multiple resistance and pH antiporter Groups 1 and 2 in the genome of a haloalkaliphilic bacterium. © The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.


April 21, 2020

The complete mitogenome of clam Corbicula fluminea determined using next-generation and PacBio sequencing

Corbicula fluminea is an important aquatic commercial species in China. In this study, we present the complete mitogenome and a phylogenetic analysis of C. fluminea, determined using next-generation and PacBio long read sequencing. The mitogenome of C. fluminea is 17,423bp in size, including 13 protein-coding genes, two ribosomal RNA genes, 22 tRNA genes, and a putative control region, all located on the same strand. The base composition of the entire mitogenome showed a conspicuous AþT bias of 70.5 %. The entire mitogenome data produced in this study provides the genomic resour- ces available for future evolutionary studies.


April 21, 2020

Development and Genome Sequencing of a Laboratory-Inbred Miniature Pig Facilitates Study of Human Diabetic Disease.

Pig has been proved to be a valuable large animal model used for research on diabetic disease. However, their translational value is limited given their distinct anatomy and physiology. For the last 30 years, we have been developing a laboratory Asian miniature pig inbred line (Bama miniature pig [BM]) from the primitive Bama xiang pig via long-term selective inbreeding. Here, we assembled a BM reference genome at full chromosome-scale resolution with a total length of 2.49 Gb. Comparative and evolutionary genomic analyses identified numerous variations between the BM and commercial pig (Duroc), particularly those in the genetic loci associated with the features advantageous to diabetes studies. Resequencing analyses revealed many differentiated gene loci associated with inbreeding and other selective forces. These together with transcriptome analyses of diabetic pig models provide a comprehensive genetic basis for resistance to diabetogenic environment, especially related to energy metabolism.Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved.


April 21, 2020

Genome Comparisons of Wild Isolates of Caulobacter crescentus Reveal Rates of Inversion and Horizontal Gene Transfer.

Since previous interspecies comparisons of Caulobacter genomes have revealed extensive genome rearrangements, we decided to compare the nucleotide sequences of four C. crescentus genomes, NA1000, CB1, CB2, and CB13. To accomplish this goal, we used PacBio sequencing technology to determine the nucleotide sequence of the CB1, CB2, and CB13 genomes, and obtained each genome sequence as a single contig. To correct for possible sequencing errors, each genome was sequenced twice. The only differences we observed between the two sets of independently determined sequences were random omissions of a single base in a small percentage of the homopolymer regions where a single base is repeated multiple times. Comparisons of these four genomes indicated that horizontal gene transfer events that included small numbers of genes occurred at frequencies in the range of 10-3 to 10-4 insertions per generation. Large insertions were about 100 times less frequent. Also, in contrast to previous interspecies comparisons, we found no genome rearrangements when the closely related NA1000, CB1, and CB2 genomes were compared, and only eight inversions and one translocation when the more distantly related CB13 genome was compared to the other genomes. Thus, we estimate that inversions occur at a rate of one per 10 to 12 million generations in Caulobacter genomes. The inversions seem to be complex events that include the simultaneous creation of indels.


April 21, 2020

Deciphering bacterial epigenomes using modern sequencing technologies.

Prokaryotic DNA contains three types of methylation: N6-methyladenine, N4-methylcytosine and 5-methylcytosine. The lack of tools to analyse the frequency and distribution of methylated residues in bacterial genomes has prevented a full understanding of their functions. Now, advances in DNA sequencing technology, including single-molecule, real-time sequencing and nanopore-based sequencing, have provided new opportunities for systematic detection of all three forms of methylated DNA at a genome-wide scale and offer unprecedented opportunities for achieving a more complete understanding of bacterial epigenomes. Indeed, as the number of mapped bacterial methylomes approaches 2,000, increasing evidence supports roles for methylation in regulation of gene expression, virulence and pathogen-host interactions.


April 21, 2020

Whole-genome analysis of the colonization-resistant bacterium Phytobacter sp. SCO41T isolated from Bacillus nematocida B16-fed adult Caenorhabditis elegans.

Colonization resistance is an important attribute for bacterial interactions with hosts, but the mechanism is still not completely clear. In this study, we found that Phytobacter sp. SCO41T can effectively inhibit the in vivo colonization of Bacillus nematocida B16 in Caenorhabditis elegans, and we revealed the colonization resistance mechanism. Three strains of colonization-resistant bacteria, SCO41T, BX15, and BC7, were isolated from the intestines of the free-living nematode C. elegans derived from rotten fruit and soil. The primary characteristics and genome map of one of the three isolates was investigated to explore the underlying mechanism of colonization resistance in C. elegans. In addition, we performed exogenous iron supplementation and gene cluster knockout experiments to validate the sequencing results. The results showed that relationship was close among the three strains, which was identified as belonging to the genus Phytobacter. The type strain is SCO41T (=?CICC 24103T?=?KCTC 52362T). Whole genome analysis showed that csgA, csgB, csgC, csgE, csgF, and csgG were involved in the curli adhesive process and that fepA, fepB, fepC, fepD, and fepG played important roles in SCO41T against the colonization of B. nematocida B16 in C. elegans by competing for iron. Exogenous iron supplementation showed that exogenous iron can increase the colonization of B. nematocida B16, which was additionally confirmed by a deletion mutant strain. The csg gene family contributes to the colonization of SCO41T in C. elegans. Curli potentially contribute to the colonization of SCO41T in C. elegans, and enterobactin has a key role in SCO41T to resist the colonization of B. nematocida B16 by competing for iron.


April 21, 2020

Genetic characterization of an MDR/virulence genomic element carrying two T6SS gene clusters in a clinical Klebsiella pneumoniae isolate of swine origin.

Multiresistant Klebsiella pneumoniae isolates rarely cause infections in pigs. The aim of this study was to investigate a multiresistant porcine K. pneumoniae isolate for plasmidic and chromosomal antimicrobial resistance and virulence genes and their genetic environment.K. pneumoniae strain ZYST1 originated from a pig with pneumonia. Antimicrobial susceptibility testing was performed using broth microdilution. Conjugation experiments were conducted using Escherichia coli J53 as the recipient. The complete sequences of the chromosomal DNA and the plasmids were generated by WGS and analysed for the presence of resistance and virulence genes.The MDR K. pneumoniae ST1 strain ZYST1 contained three plasmids belonging to incompatibility groups IncFIIk5-FIB, IncI1 and IncX4, respectively. The IncFIIk5-FIB plasmid carried the resistance genes aadA2, mph(A), sul1 and aph(3′)-Ia, and the IncI1 plasmid carried aadA22 and erm(B). No resistance genes were present on the IncX4 plasmid. Plasmids related to the aforementioned three plasmids were also present in other Enterobacteriaceae species from humans, animals and the environment. Bioinformatic analyses identified a chromosomal 904?kb MDR element flanked by two copies of ISKpn26. This element included virulence factors, such as a type VI secretion system (T6SS) and genes for type 1 fimbriae, the toxin-antitoxin system HipA/HipB, antimicrobial resistance genes, such as blaSHV-187, mdtk, catA and the multiple antibiotic resistance operon marRABC, and heavy metal resistance determinants, such as chrB/chrA and tehA/tehB.This study reports a novel 904?kb MDR/virulence genomic element and three important plasmids coexisting in a clinical K. pneumoniae isolate of animal origin. © The Author(s) 2019. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For permissions, please email: journals.permissions@oup.com.


April 21, 2020

Co-circulation of Multidrug-resistant Shigella Among Men Who Have Sex With Men in Australia.

In urban Australia, the burden of shigellosis is either in returning travelers from shigellosis-endemic regions or in men who have sex with men (MSM). Here, we combine genomic data with comprehensive epidemiological data on sexual exposure and travel to describe the spread of multidrug-resistant Shigella lineages.A population-level study of all cultured Shigella isolates in the state of Victoria, Australia, was undertaken from 1 January 2016 through 31 March 2018. Antimicrobial susceptibility testing, whole-genome sequencing, and bioinformatic analyses of 545 Shigella isolates were performed at the Microbiological Diagnostic Unit Public Health Laboratory. Risk factor data on travel and sexual exposure were collected through enhanced surveillance forms or by interviews.Rates of antimicrobial resistance were high, with 17.6% (95/541) and 50.6% (274/541) resistance to ciprofloxacin and azithromycin, respectively. There were strong associations between antimicrobial resistance, phylogeny, and epidemiology. Specifically, 2 major MSM-associated lineages were identified: a Shigellasonnei lineage (n = 159) and a Shigella flexneri 2a lineage (n = 105). Of concern, 147/159 (92.4%) of isolates within the S. sonnei MSM-associated lineage harbored mutations associated with reduced susceptibility to recommended oral antimicrobials: namely, azithromycin, trimethoprim-sulfamethoxazole, and ciprofloxacin. Long-read sequencing demonstrated global dissemination of multidrug-resistant plasmids across Shigella species and lineages, but predominantly associated with MSM isolates.Our contemporary data highlight the ongoing public health threat posed by resistant Shigella, both in Australia and globally. Urgent multidisciplinary public health measures are required to interrupt transmission and prevent infection. © The Author(s) 2019. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.


April 21, 2020

The complete genome of the antifungal bacterium Pseudomonas sp. strain MS82

The genomic sequence of Pseudomonas sp. strain MS82 isolated from the rhizosphere of a soybean plant is reported and analyzed in relation to its extensive antifungal activity. Broth media used for production of the antifungal extract from strain MS82 against the mushroom pathogen Trichoderma viride were optimized using the routine plate bioassays. Culture extract of strain 82 in the peptone-K2HPO4-MgSO4 medium (PKM; peptone 20 g/L, K2HPO4 1.5 g/L, MgSO4 1.5 g/L and sterilized water) showed the best antifungal activity with an inhibition rate of 88.69thinspacetextpmthinspace3.87% to the fungal pathogen. Control efficacy of the T. viride contamination was investigated in mushroom production compost. The disease severity index of P. ostreatus hyphae infected by T. viride of treatment mixed with MS82 supernatant (38.33thinspacetextpmthinspace5.20%) was lower than that of the compost mixed with non-inoculated broth (97.50thinspacetextpmthinspace2.50%). The multilocus sequence analysis, containing four partial sequences from the gyrB, rpoB, recA and rpoD, suggests that strain MS82 is a Pseudomonas strain. The strain MS82 genome consists of a circular chromosome of 6,207,556 bp that was predicted to encode 5401 proteins and 131 RNA genes. Genome analysis revealed the presence of the gene clusters for biosynthesis of antifungal compounds, such as phenazine, pyocyanin, pyoverdine, volatile HCN and cyclic lipopeptides (arthrofactin). Genome analysis presented in the report will provide insights into development of biological control for fungal contamination in mushroom cultivation.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.