April 21, 2020  |  

Analysis of a poxtA- and optrA-co-carrying conjugative multiresistance plasmid from Enterococcus faecalis.

Authors: Hao, Wenbo and Shan, Xinxin and Li, Dexi and Schwarz, Stefan and Zhang, Su-Mei and Li, Xin-Sheng and Du, Xiang-Dang

To investigate the presence and transferability of the poxtA gene and identify the genetic context of poxtA in two enterococcal plasmids from swine.MICs were determined by broth microdilution. A total of 114 porcine enterococci with florfenicol MICs of =16?mg/L were screened for the presence of the poxtA gene by PCR. Transferability of poxtA was investigated by conjugation and transformation. The poxtA-carrying plasmids were completely sequenced using the Illumina Miseq and PacBio RSII platform. The presence of circular intermediates was examined by inverse PCR.The poxtA gene was present in 57.9% (66/114) of the florfenicol-resistant porcine enterococci. Two poxtA-carrying plasmids, pE035 and pE076, were identified. The conjugative 121524?bp plasmid pE035 carried poxtA and optrA along with the resistance genes erm(A), erm(B), aac(A)-aph(D), lnu(G), fexB, dfrG and bcrABDR. Three mobile elements, comprising a mobile dfrG locus, a mobile bcrABDR locus and an unconventional circularizable structure containing aac(A)-aph(D), were located on this plasmid and all proved to be active by inverse PCR. The non-conjugative 19832?bp plasmid pE076 only carried poxtA and fexB. After transfer, both the transconjugant and the transformant displayed elevated MICs of the respective antimicrobial agents.To the best of our knowledge, this is the first report of the co-location of the oxazolidinone resistance genes poxtA and optrA on a conjugative multiresistance plasmid from a porcine enterococcal strain. In addition, the presence of three mobile elements in such a plasmid will aid in the persistence and dissemination of poxtA and optrA among enterococci. © The Author(s) 2019. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For permissions, please email: [email protected].

Journal: The Journal of antimicrobial chemotherapy
DOI: 10.1093/jac/dkz109
Year: 2019

Read publication

Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.