Menu
July 7, 2019  |  

Complete genome sequencing and comparative genomic analysis of the thermotolerant acetic acid bacterium, Acetobacter pasteurianus SKU1108, provide a new insight into thermotolerance.

Acetobacter pasteurianus SKU1108 is a typical thermotolerant acetic acid bacterium. In this study, the complete genome sequence of the SKU1108 strain was elucidated, and information on genomic modifications due to the thermal adaptation of SKU1108 was updated. In order to obtain a clearer understanding of the genetic background responsible for thermotolerance, the SKU1108 genome was compared with those of two closely related complete genome strains, thermotolerant A. pasteurianus 386B and mesophilic A. pasteurianus NBRC 3283. All 24 “thermotolerant genes” required for growth at higher temperatures in the thermotolerant Acetobacter tropicalis SKU1100 strain were conserved in all three strains. However, these thermotolerant genes accumulated amino acid mutations. Some biased mutations, particularly those that occurred in xanthine dehydrogenase XdhA, may be related to thermotolerance. By aligning whole genome sequences, we identified ten SKU1108 strain-specific regions, three of which were conserved in the genomes of the two thermotolerant A. pasteurianus strains. One of the regions contained a unique paralog of the thermotolerant gene xdhA, which may also be responsible for conferring thermotolerance. Thus, comparative genomics of complete genome sequences may provide novel insights into the phenotypes of these thermotolerant strains.


July 7, 2019  |  

Use of WGS data for investigation of a long-term NDM-1-producing Citrobacter freundii outbreak and secondary in vivo spread of blaNDM-1 to Escherichia coli, Klebsiella pneumoniae and Klebsiella oxytoca.

An outbreak of NDM-1-producing Citrobacter freundii and possible secondary in vivo spread of blaNDM-1 to other Enterobacteriaceae were investigated.From October 2012 to March 2015, meropenem-resistant Enterobacteriaceae were detected in 45 samples from seven patients at Aalborg University Hospital, Aalborg, Denmark. In silico resistance genes, Inc plasmid types and STs (MLST) were obtained from WGS data from 24 meropenem-resistant isolates (13 C. freundii, 6 Klebsiella pneumoniae, 4 Escherichia coli and 1 Klebsiella oxytoca) and 1 meropenem-susceptible K. oxytoca. The sequences of the meropenem-resistant C. freundii isolates were compared by phylogenetic analyses. In vitro susceptibility to 21 antimicrobial agents was tested. Furthermore, in vitro conjugation and plasmid characterization was performed.From the seven patients, 13 highly clonal ST18 NDM-1-producing C. freundii were isolated. The ST18 NDM-1-producing C. freundii isolates were only susceptible to tetracycline, tigecycline, colistin and fosfomycin (except for the C. freundii isolates from Patient 2 and Patient 7, which were additionally resistant to tetracycline). The E. coli and K. pneumoniae from different patients belonged to different STs, indicating in vivo transfer of blaNDM-1 in the individual patients. This was further supported by in vitro conjugation and detection of a 154 kb IncA/C2 plasmid with blaNDM-1. Patient screenings failed to reveal any additional cases. None of the patients had a history of recent travel abroad and the source of the blaNDM-1 plasmid was unknown.To our knowledge, this is the first report of an NDM-1-producing C. freundii outbreak and secondary in vivo spread of an IncA/C2 plasmid with blaNDM-1 to other Enterobacteriaceae.© The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.


July 7, 2019  |  

Full-length nucleotide sequences of mcr-1-harboring plasmids isolated from extended- spectrum-ß-lactamase-producing Escherichia coli isolates of different origins.

Here, we present the full sequences of three mcr-1-carrying plasmids isolated from extended-spectrum-ß-lactamase (ESBL)-producing Escherichia coli The plasmids belong to three different replicon types and are 34,640 bp, 209,401 bp, and 247,885 bp in size. We describe for the first time a composite transposon containing mcr-1 localized on a multidrug-resistant (MDR) IncHI2 plasmid harboring additional determinants of resistance to six different classes of antibiotics, including the ESBL gene blaCTX-M-1, and heavy metal resistance. Copyright © 2016, American Society for Microbiology. All Rights Reserved.


July 7, 2019  |  

The complete genome sequence of the nicotine-degrading bacterium Shinella sp. HZN7.

Nicotine is a natural alkaloid that is very toxic to humans. To eliminate the harmful effects of nicotine in the environment, biological methods employing microbes to degrade nicotine are required (Brandsch, 2006; Liu et al., 2015). Shinella sp. HZN7 can degrade nicotine efficiently via the variant of a pyridine and pyrrolidine pathways (VPP; Ma et al., 2013; Qiu et al., 2014, 2015). The main intermediates in this pathway include 6-hydroxy-nicotine, 6-hydroxy-N-methylmyosmine, 6-hydroxypseudooxynicotine, 6-hydroxy-3-succinoyl-pyridine, and 2,5-dihydroxypyridine. This strain is the first nicotine-degrading bacterium to be isolated from the genus Shinella.


July 7, 2019  |  

Key experimental evidence of chromosomal DNA transfer among selected tuberculosis-causing mycobacteria.

Horizontal gene transfer (HGT) is a major driving force of bacterial diversification and evolution. For tuberculosis-causing mycobacteria, the impact of HGT in the emergence and distribution of dominant lineages remains a matter of debate. Here, by using fluorescence-assisted mating assays and whole genome sequencing, we present unique experimental evidence of chromosomal DNA transfer between tubercle bacilli of the early-branching Mycobacterium canettii clade. We found that the obtained recombinants had received multiple donor-derived DNA fragments in the size range of 100 bp to 118 kbp, fragments large enough to contain whole operons. Although the transfer frequency between M. canettii strains was low and no transfer could be observed among classical Mycobacterium tuberculosis complex (MTBC) strains, our study provides the proof of concept for genetic exchange in tubercle bacilli. This outstanding, now experimentally validated phenomenon presumably played a key role in the early evolution of the MTBC toward pathogenicity. Moreover, our findings also provide important information for the risk evaluation of potential transfer of drug resistance and fitness mutations among clinically relevant mycobacterial strains.


July 7, 2019  |  

Whole genome sequence analysis indicates recent diversification of mammal-associated Campylobacter fetus and implicates a genetic factor associated with H2S production.

Campylobacter fetus (C. fetus) can cause disease in both humans and animals. C. fetus has been divided into three subspecies: C. fetus subsp. fetus (Cff), C. fetus subsp. venerealis (Cfv) and C. fetus subsp. testudinum (Cft). Subspecies identification of mammal-associated C. fetus strains is crucial in the control of Bovine Genital Campylobacteriosis (BGC), a syndrome associated with Cfv. The prescribed methods for subspecies identification of the Cff and Cfv isolates are: tolerance to 1 % glycine and H2S production.In this study, we observed the deletion of a putative cysteine transporter in the Cfv strains, which are not able to produce H2S from L-cysteine. Phylogenetic reconstruction of the core genome single nucleotide polymorphisms (SNPs) within Cff and Cfv strains divided these strains into five different clades and showed that the Cfv clade and a Cff clade evolved from a single Cff ancestor.Multiple C. fetus clades were observed, which were not consistent with the biochemical differentiation of the strains. This suggests the need for a closer evaluation of the current C. fetus subspecies differentiation, considering that the phenotypic differentiation is still applied in BGC control programs.


July 7, 2019  |  

Genome and plasmid analysis of blaIMP-4 -carrying Citrobacter freundii B38.

Sequencing of the blaIMP-4 -carrying C. freundii B38 using PacBio SMRT technique revealed that the genome contained a chromosome of 5,134,500 bp, and three plasmids, pOZ172 (127,005 bp), pOZ181 (277,592 bp), and pOZ182 (18,467 bp). Plasmid pOZ172 was identified as IncFIIY, like pP10164-NDM and pNDM-EcGN174. It carries a class 1 integron with four cassettes: blaIMP-4-qacG2-aacA4-aphA15, and a complete hybrid tni module (tniR-tniQ-tniB-tniA). The recombination of tniR from Tn402 (identical) with tniQBA (99%) from Tn5053 occurred within the res site of Tn402/5053. The Tn402/5053-like integron, named Tn6017, was inserted into Tn1722 at the res II site. The replication, partitioning and transfer systems of pOZ181 were similar to IncHI2 (e.g. R478) and contained a sul1-type class 1 integron with the cassette array: orf-dfrA1-orf-gcu37-aadA5 linked to an upstream Tn1696 tnpA-tnpR and to a downstream 3′ CS and ISCR1 A Tn2 transposon with a blaTEM-1b ß-lactamase was identified on pOZ182. Other interesting resistance determinants on the B38 chromosome included MDR efflux pumps, AmpC ß-lactamase, and resistances to Cu, Ag, As, and Zn. This is the first report of a complete tni module linked to a blaIMP- 4 carrying class 1 integron, and together with other recently reported non-sul1 integrons, represents the emergence of a distinct evolutionary lineage of class 1 integrons lacking a 3′ -CS (qacE?1-sul1). The unique cassette array, complete tni module of Tn6017, and incompatibility group of pOZ172 suggests a different blaIMP-4 evolutionary pathway in C. freundii B38 compared to other blaIMP-4 foundin Gram-negative bacteria in the Western Pacific Region. Copyright © 2016, American Society for Microbiology. All Rights Reserved.


July 7, 2019  |  

Genomic studies of nitrogen-fixing rhizobial strains from Phaseolus vulgaris seeds and nodules.

Rhizobia are soil bacteria that establish symbiotic relationships with legumes and fix nitrogen in root nodules. We recently reported that several nitrogen-fixing rhizobial strains, belonging to Rhizobium phaseoli, R. trifolii, R. grahamii and Sinorhizobium americanum, were able to colonize Phaseolus vulgaris (common bean) seeds. To gain further insight into the traits that support this ability, we analyzed the genomic sequences and proteomes of R. phaseoli (CCGM1) and S. americanum (CCGM7) strains from seeds and compared them with those of the closely related strains CIAT652 and CFNEI73, respectively, isolated only from nodules.In a fine structural study of the S. americanum genomes, the chromosomes, megaplasmids and symbiotic plasmids were highly conserved and syntenic, with the exception of the smaller plasmid, which appeared unrelated. The symbiotic tract of CCGM7 appeared more disperse, possibly due to the action of transposases. The chromosomes of seed strains had less transposases and strain-specific genes. The seed strains CCGM1 and CCGM7 shared about half of their genomes with their closest strains (3353 and 3472 orthologs respectively), but a large fraction of the rest also had homology with other rhizobia. They contained 315 and 204 strain-specific genes, respectively, particularly abundant in the functions of transcription, motility, energy generation and cofactor biosynthesis. The proteomes of seed and nodule strains were obtained and showed a particular profile for each of the strains. About 82 % of the proteins in the comparisons appeared similar. Forty of the most abundant proteins in each strain were identified; these proteins in seed strains were involved in stress responses and coenzyme and cofactor biosynthesis and in the nodule strains mainly in central processes. Only 3 % of the abundant proteins had hypothetical functions.Functions that were enriched in the genomes and proteomes of seed strains possibly participate in the successful occupancy of the new niche. The genome of the strains had features possibly related to their presence in the seeds. This study helps to understand traits of rhizobia involved in seed adaptation.


July 7, 2019  |  

Comparative genomics reveals Lysinibacillus sphaericus group comprises a novel species.

Early in the 1990s, it was recognized that Lysinibacillus sphaericus, one of the most popular and effective entomopathogenic bacteria, was a highly heterogeneous group. Many authors have even proposed it comprises more than one species, but the lack of phenotypic traits that guarantee an accurate differentiation has not allowed this issue to be clarified. Now that genomic technologies are rapidly advancing, it is possible to address the problem from a whole genome perspective, getting insights into the phylogeny, evolutive history and biology itself.The genome of the Colombian strain L. sphaericus OT4b.49 was sequenced, assembled and annotated, obtaining 3 chromosomal contigs and no evidence of plasmids. Using these sequences and the 13 other L. sphaericus genomes available on the NCBI database, we carried out comparative genomic analyses that included whole genome alignments, searching for mobile elements, phylogenomic metrics (TETRA, ANI and in-silico DDH) and pan-genome assessments. The results support the hypothesis about this species as a very heterogeneous group. The entomopathogenic lineage is actually a single and independent species with 3728 core genes and 2153 accessory genes, whereas each non-toxic strain seems to be a separate species, though without a clear circumscription. Toxin-encoding genes, binA, B and mtx1, 2, 3 could be acquired via horizontal gene transfer in a single evolutionary event. The non-toxic strain OT4b.31 is the most related with the type strain KCTC 3346.The current L. sphaericus is actually a sensu lato due to a sub-estimation of diversity accrued using traditional non-genomics based classification strategies. The toxic lineage is the most studied with regards to its larvicidal activity, which is a greatly conserved trait among these strains and thus, their differentiating feature. Further studies are needed in order to establish a univocal classification of the non-toxic strains that, according to our results, seem to be a paraphyletic group.


July 7, 2019  |  

Tracking inter-institutional spread of NDM and identification of a novel NDM-positive plasmid, pSg1-NDM, using next-generation sequencing approaches.

Owing to gene transposition and plasmid conjugation, New Delhi metallo-ß-lactamase (NDM) is typically identified among varied Enterobacteriaceae species and STs. We used WGS to characterize the chromosomal and plasmid molecular epidemiology of NDM transmission involving four institutions in Singapore.Thirty-three Enterobacteriaceae isolates (collection years 2010-14) were sequenced using short-read sequencing-by-synthesis and analysed. Long-read single molecule, real-time sequencing (SMRTS) was used to characterize genetically a novel plasmid pSg1-NDM carried on Klebsiella pneumoniae ST147.In 20 (61%) isolates, blaNDM was located on the pNDM-ECS01 plasmid in the background of multiple bacterial STs, including eight K. pneumoniae STs and five Escherichia coli STs. In six (18%) isolates, a novel blaNDM-positive plasmid, pSg1-NDM, was found only in K. pneumoniae ST147. The pSg1-NDM-K. pneumoniae ST147 clone (Sg1-NDM) was fully sequenced using SMRTS. pSg1-NDM, a 90?103 bp IncR plasmid, carried genes responsible for resistance to six classes of antimicrobials. A large portion of pSg1-NDM had no significant homology to any known plasmids in GenBank. pSg1-NDM had no conjugative transfer region. Combined chromosomal-plasmid phylogenetic analysis revealed five clusters of clonal bacterial NDM-positive plasmid transmission, of which two were inter-institution clusters. The largest inter-institution cluster involved six K. pneumoniae ST147-pSg1-NDM isolates. Fifteen patients were involved in transmission clusters, of which four had ward contact, six had hospital contact and five had an unknown transmission link.A combined sequencing-by-synthesis and SMRTS approach can determine effectively the transmission clusters of blaNDM and genetically characterize novel plasmids. Plasmid molecular epidemiology is important to understanding NDM spread as blaNDM-positive plasmids can conjugate extensively across species and STs.© The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.


July 7, 2019  |  

Complete sequencing of plasmids containing blaOXA-163 and blaOXA-48 in Escherichia coli ST131.

OXA-48-like enzymes have emerged as important extended-spectrum ß-lactamases/carbapenemases in E. coli ST131. We report the structure of the first fully sequenced blaOXA-163 plasmid, and of two other blaOXA-48 plasmids in this lineage. blaOXA-163 was located on a 71kb IncN plasmid with other resistance genes. blaOXA-48 was present on IncL/M plasmids, genetically similar to other blaOXA-48 plasmid sequences, and consistent with inter-species/inter-lineage spread. The presence of blaOXA-48-like genes on epidemic plasmids in ST131 is of concern. Copyright © 2016, American Society for Microbiology. All Rights Reserved.


July 7, 2019  |  

Plasmids from Shiga toxin-producing Escherichia coli strains with rare enterohemolysin gene (ehxA) subtypes reveal pathogenicity potential and display a novel evolutionary path.

Most Shiga toxin-producing Escherichia coli (STEC) strains associated with severe disease, such as hemolytic-uremic syndrome (HUS), carry large enterohemolysin-encoding (ehxA) plasmids, e.g., pO157 and pO103, that contribute to STEC clinical manifestations. Six ehxA subtypes (A through F) exist that phylogenetically cluster into eae-positive (B, C, F), a mix of eae-positive (E) and eae-negative (A), and a third, more distantly related, cluster of eae-negative (D) STEC strains. While subtype B, C, and F plasmids share a number of virulence traits that are distinct from those of subtype A, sequence data have not been available for subtype D and E plasmids. Here, we determined and compared the genetic composition of four subtype D and two subtype E plasmids to establish their evolutionary relatedness among ehxA subtypes and define their potential role in pathogenicity. We found that subtype D strains carry one exceptionally large plasmid (>200 kbp) that carries a variety of virulence genes that are associated with enterotoxigenic and enterohemorrhagic E. coli, which, quite possibly, enables these strains to cause disease despite being food isolates. Our data offer further support for the hypothesis that this subtype D plasmid represents a novel virulence plasmid, sharing very few genetic features with other plasmids; we conclude that these plasmids have evolved from a different evolutionary lineage than the plasmids carrying the other ehxA subtypes. In contrast, the 50-kbp plasmids of subtype E (pO145), although isolated from HUS outbreak strains, carried only few virulence-associated determinants, suggesting that the clinical presentation of subtype E strains is largely a result of chromosomally encoded virulence factors.Bacterial plasmids are known to be key agents of change in microbial populations, promoting the dissemination of various traits, such as drug resistance and virulence. This study determined the genetic makeup of virulence plasmids from rare enterohemolysin subtype D and E Shiga toxin-producing E. coli strains. We demonstrated that ehxA subtype D plasmids represent a novel E. coli virulence plasmid, and although subtype D plasmids were derived from nonclinical isolates, they encoded a variety of virulence determinants that are associated with pathogenic E. coli In contrast, subtype E plasmids, isolated from strains recovered from severely ill patients, carry only a few virulence determinants. The results of this study reemphasize the plasticity and vast diversity among E. coli plasmids. This work demonstrates that, although E. coli strains of certain serogroups may not be frequently associated with disease, they should not be underestimated in protecting human health and food safety. Copyright © 2016, American Society for Microbiology. All Rights Reserved.


July 7, 2019  |  

Towards integration of population and comparative genomics in forest trees.

The past decade saw the initiation of an ongoing revolution in sequencing technologies that is transforming all fields of biology. This has been driven by the advent and widespread availability of high-throughput, massively parallel short-read sequencing (MPS) platforms. These technologies have enabled previously unimaginable studies, including draft assemblies of the massive genomes of coniferous species and population-scale resequencing. Transcriptomics studies have likewise been transformed, with RNA-sequencing enabling studies in nonmodel organisms, the discovery of previously unannotated genes (novel transcripts), entirely new classes of RNAs and previously unknown regulatory mechanisms. Here we touch upon current developments in the areas of genome assembly, comparative regulomics and population genetics as they relate to studies of forest tree species.© 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.


July 7, 2019  |  

Genomes of Candidatus Wolbachia bourtzisii wDacA and Candidatus Wolbachia pipientis wDacB from the cochineal insect Dactylopius coccus (Hemiptera: Dactylopiidae).

Dactylopius species, known as cochineal insects, are the source of the carminic acid dye used worldwide. The presence of two Wolbachia strains in Dactylopius coccus from Mexico was revealed by PCR amplification of wsp and sequencing of 16S rRNA genes. A metagenome analysis recovered the genome sequences of Candidatus Wolbachia bourtzisii wDacA (supergroup A) and Candidatus Wolbachia pipientis wDacB (supergroup B). Genome read coverage, as well as 16S rRNA clone sequencing, revealed that wDacB was more abundant than wDacA. The strains shared similar predicted metabolic capabilities that are common to Wolbachia, including riboflavin, ubiquinone, and heme biosynthesis, but lacked other vitamin and cofactor biosynthesis as well as glycolysis, the oxidative pentose phosphate pathway, and sugar uptake systems. A complete tricarboxylic acid cycle and gluconeogenesis were predicted as well as limited amino acid biosynthesis. Uptake and catabolism of proline were evidenced in Dactylopius Wolbachia strains. Both strains possessed WO-like phage regions and type I and type IV secretion systems. Several efflux systems found suggested the existence of metal toxicity within their host. Besides already described putative virulence factors like ankyrin domain proteins, VlrC homologs, and patatin-like proteins, putative novel virulence factors related to those found in intracellular pathogens like Legionella and Mycobacterium are highlighted for the first time in Wolbachia Candidate genes identified in other Wolbachia that are likely involved in cytoplasmic incompatibility were found in wDacB but not in wDacA. Copyright © 2016 Ramírez-Puebla et al.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.