X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Friday, July 19, 2019

Single-molecule sequencing of the desiccation-tolerant grass Oropetium thomaeum.

Plant genomes, and eukaryotic genomes in general, are typically repetitive, polyploid and heterozygous, which complicates genome assembly. The short read lengths of early Sanger and current next-generation sequencing platforms hinder assembly through complex repeat regions, and many draft and reference genomes are fragmented, lacking skewed GC and repetitive intergenic sequences, which are gaining importance due to projects like the Encyclopedia of DNA Elements (ENCODE). Here we report the whole-genome sequencing and assembly of the desiccation-tolerant grass Oropetium thomaeum. Using only single-molecule real-time sequencing, which generates long (>16?kilobases) reads with random errors, we assembled 99% (244?megabases) of the Oropetium genome into…

Read More »

Friday, July 19, 2019

Lineage-specific methyltransferases define the methylome of the globally disseminated Escherichia coli ST131 clone.

Escherichia coli sequence type 131 (ST131) is a clone of uropathogenic E. coli that has emerged rapidly and disseminated globally in both clinical and community settings. Members of the ST131 lineage from across the globe have been comprehensively characterized in terms of antibiotic resistance, virulence potential, and pathogenicity, but to date nothing is known about the methylome of these important human pathogens. Here we used single-molecule real-time (SMRT) PacBio sequencing to determine the methylome of E. coli EC958, the most-well-characterized completely sequenced ST131 strain. Our analysis of 52,081 methylated adenines in the genome of EC958 discovered three (m6)A methylation motifs that have…

Read More »

Friday, July 19, 2019

The power of Single Molecule Real-Time sequencing technology in the de novo assembly of a eukaryotic genome.

Second-generation sequencers (SGS) have been game-changing, achieving cost-effective whole genome sequencing in many non-model organisms. However, a large portion of the genomes still remains unassembled. We reconstructed azuki bean (Vigna angularis) genome using single molecule real-time (SMRT) sequencing technology and achieved the best contiguity and coverage among currently assembled legume crops. The SMRT-based assembly produced 100 times longer contigs with 100 times smaller amount of gaps compared to the SGS-based assemblies. A detailed comparison between the assemblies revealed that the SMRT-based assembly enabled a more comprehensive gene annotation than the SGS-based assemblies where thousands of genes were missing or fragmented.…

Read More »

Friday, July 19, 2019

AnnoTALE: bioinformatics tools for identification, annotation, and nomenclature of TALEs from Xanthomonas genomic sequences.

Transcription activator-like effectors (TALEs) are virulence factors, produced by the bacterial plant-pathogen Xanthomonas, that function as gene activators inside plant cells. Although the contribution of individual TALEs to infectivity has been shown, the specific roles of most TALEs, and the overall TALE diversity in Xanthomonas spp. is not known. TALEs possess a highly repetitive DNA-binding domain, which is notoriously difficult to sequence. Here, we describe an improved method for characterizing TALE genes by the use of PacBio sequencing. We present ‘AnnoTALE’, a suite of applications for the analysis and annotation of TALE genes from Xanthomonas genomes, and for grouping similar…

Read More »

Friday, July 19, 2019

Genome analysis of the fruiting body forming myxobacterium Chondromyces crocatus reveals high potential for natural product biosynthesis.

Here we report the first complete genome sequence of the type strain of the myxobacterial genus Chondromyces – Chondromyces crocatus Cm c5. It presents one of the largest prokaryotic genomes featuring a single circular chromosome and no plasmids. Analysis revealed an enlarged set of tRNA genes, along with reduced pressure on preferred codon usage compared to other bacterial genomes. The large coding capacity and the plethora of encoded secondary metabolite biosynthetic gene clusters is in line with the capability of Cm c5 to produce an arsenal of anti-bacterial, anti-fungal and cytotoxic compounds. Known pathways of the ajudazol, chondramide, chondrochloren, crocacin,…

Read More »

Friday, July 19, 2019

Radical remodeling of the Y chromosome in a recent radiation of malaria mosquitoes.

Y chromosomes control essential male functions in many species, including sex determination and fertility. However, because of obstacles posed by repeat-rich heterochromatin, knowledge of Y chromosome sequences is limited to a handful of model organisms, constraining our understanding of Y biology across the tree of life. Here, we leverage long single-molecule sequencing to determine the content and structure of the nonrecombining Y chromosome of the primary African malaria mosquito, Anopheles gambiae. We find that the An. gambiae Y consists almost entirely of a few massively amplified, tandemly arrayed repeats, some of which can recombine with similar repeats on the X…

Read More »

Friday, July 19, 2019

Nested Russian doll-like genetic mobility drives rapid dissemination of the Carbapenem resistance gene blaKPC

The recent widespread emergence of carbapenem resistance in Enterobacteriaceae is a major public health concern, as carbapenems are a therapy of last resort against this family of common bacterial pathogens. Resistance genes can mobilize via various mechanisms, including conjugation and transposition; however, the importance of this mobility in short-term evolution, such as within nosocomial outbreaks, is unknown. Using a combination of short- and long-read whole-genome sequencing of 281 blaKPC-positive Enterobacteriaceae isolates from a single hospital over 5 years, we demonstrate rapid dissemination of this carbapenem resistance gene to multiple species, strains, and plasmids. Mobility of blaKPC occurs at multiple nested…

Read More »

Friday, July 19, 2019

Initial assessment of the molecular epidemiology of blaNDM-1 in Colombia.

We report complete genome sequences of fourblaNDM-1-harboring Gram-negative multidrug resistant (MDR) isolates from Colombia. TheblaNDM-1genes were located 193Kb-Inc FIA, 178Kb-Inc A/C2 and 47Kb (unknown Inc type) plasmids. MLST revealed that isolates belong to ST10 (Escherichia coli), ST392 (Klebsiella pneumoniae), and ST322 and ST464 (Acinetobacter baumanniiandA. nosocomialis, respectively). Our analysis identified that the Inc A/C2 plasmid inE. colicontained a novel complex transposon (Tn125and Tn5393with 3 copies ofblaNDM-1) and a recombination “hotspot” for the acquisition of new resistance determinants. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

Read More »

Friday, July 19, 2019

AgIn: Measuring the landscape of CpG methylation of individual repetitive elements.

Determining the methylation state of regions with high copy numbers is challenging for second-generation sequencing, because the read length is insufficient to map reads uniquely, especially when repetitive regions are long and nearly identical to each other. Single-molecule real-time (SMRT) sequencing is a promising method for observing such regions, because it is not vulnerable to GC bias, it produces long read lengths, and its kinetic information is sensitive to DNA modifications.We propose a novel linear-time algorithm that combines the kinetic information for neighboring CpG sites and increases the confidence in identifying the methylation states of those sites. Using a practical…

Read More »

Friday, July 19, 2019

Analysis of tandem gene copies in maize chromosomal regions reconstructed from long sequence reads.

Haplotype variation not only involves SNPs but also insertions and deletions, in particular gene copy number variations. However, comparisons of individual genomes have been difficult because traditional sequencing methods give too short reads to unambiguously reconstruct chromosomal regions containing repetitive DNA sequences. An example of such a case is the protein gene family in maize that acts as a sink for reduced nitrogen in the seed. Previously, 41-48 gene copies of the alpha zein gene family that spread over six loci spanning between 30- and 500-kb chromosomal regions have been described in two Iowa Stiff Stalk (SS) inbreds. Analyses of…

Read More »

Friday, July 19, 2019

Extensive sequence divergence between the reference genomes of two elite indica rice varieties Zhenshan 97 and Minghui 63.

Asian cultivated rice consists of two subspecies: Oryza sativa subsp. indica and O. sativa subsp. japonica Despite the fact that indica rice accounts for over 70% of total rice production worldwide and is genetically much more diverse, a high-quality reference genome for indica rice has yet to be published. We conducted map-based sequencing of two indica rice lines, Zhenshan 97 (ZS97) and Minghui 63 (MH63), which represent the two major varietal groups of the indica subspecies and are the parents of an elite Chinese hybrid. The genome sequences were assembled into 237 (ZS97) and 181 (MH63) contigs, with an accuracy…

Read More »

Friday, July 19, 2019

Living apart together: crosstalk between the core and supernumerary genomes in a fungal plant pathogen.

Eukaryotes display remarkable genome plasticity, which can include supernumerary chromosomes that differ markedly from the core chromosomes. Despite the widespread occurrence of supernumerary chromosomes in fungi, their origin, relation to the core genome and the reason for their divergent characteristics are still largely unknown. The complexity of genome assembly due to the presence of repetitive DNA partially accounts for this.Here we use single-molecule real-time (SMRT) sequencing to assemble the genome of a prominent fungal wheat pathogen, Fusarium poae, including at least one supernumerary chromosome. The core genome contains limited transposable elements (TEs) and no gene duplications, while the supernumerary genome…

Read More »

Friday, July 19, 2019

The deep origin and recent loss of venom toxin genes in rattlesnakes.

The genetic origin of novel traits is a central but challenging puzzle in evolutionary biology. Among snakes, phospholipase A2 (PLA2)-related toxins have evolved in different lineages to function as potent neurotoxins, myotoxins, or hemotoxins. Here, we traced the genomic origin and evolution of PLA2 toxins by examining PLA2 gene number, organization, and expression in both neurotoxic and non-neurotoxic rattlesnakes. We found that even though most North American rattlesnakes do not produce neurotoxins, the genes of a specialized heterodimeric neurotoxin predate the origin of rattlesnakes and were present in their last common ancestor (~22 mya). The neurotoxin genes were then deleted independently…

Read More »

Friday, July 19, 2019

Rapid functional and sequence differentiation of a tandemly repeated species-specific multigene family in Drosophila.

Gene clusters of recently duplicated genes are hotbeds for evolutionary change. However, our understanding of how mutational mechanisms and evolutionary forces shape the structural and functional evolution of these clusters is hindered by the high sequence identity among the copies, which typically results in their inaccurate representation in genome assemblies. The presumed testis-specific, chimeric gene Sdic originated, and tandemly expanded in Drosophila melanogaster, contributing to increased male-male competition. Using various types of massively parallel sequencing data, we studied the organization, sequence evolution, and functional attributes of the different Sdic copies. By leveraging long-read sequencing data, we uncovered both copy number…

Read More »

Friday, July 19, 2019

Mechanisms of evolution in high-consequence drug resistance plasmids.

The dissemination of resistance among bacteria has been facilitated by the fact that resistance genes are usually located on a diverse and evolving set of transmissible plasmids. However, the mechanisms generating diversity and enabling adaptation within highly successful resistance plasmids have remained obscure, despite their profound clinical significance. To understand these mechanisms, we have performed a detailed analysis of the mobilome (the entire mobile genetic element content) of a set of previously sequenced carbapenemase-producing Enterobacteriaceae (CPE) from the National Institutes of Health Clinical Center. This analysis revealed that plasmid reorganizations occurring in the natural context of colonization of human hosts…

Read More »

1 3 4 5 6 7 14

Subscribe for blog updates:

Archives