Menu
July 7, 2019

Genome sequence-based marker development and genotyping in potato

Potato (Solanum tuberosum L.) is one of the world’s most economically important food crops and holds major significance for future food security. Despite its importance, the study of potato genetics and breeding has lagged behind mainly due to its polyploid genome and high levels of heterozygosity. Conventional marker and genotyping approaches have been helpful in progressing potato genetic research but have also had limitations in exploiting the outcome from these studies for gene discovery and applied research applications. The sequencing of the potato genome, followed by advancements in marker and genotyping technologies, has brought a step change in the way potato genetic studies are conducted. Potato is now amenable to modern sequence-based marker and genotyping methods with their increased ability to put thousands of markers on any population of interest without a priori knowledge. This has increased the precision and resolution of genetic studies previously not feasible in potato. A diverse range of fixed and flexible genotyping platforms, for a wide variety of research and breeding applications, are now available. Concerted research efforts are now needed to screen the available genetic diversity for this important crop to identify novel and beneficial trait alleles in order to enable efficient and precise introgression breeding permitting breeding of climate smart, and resilient, potato cultivars. This chapter provides an overview of sequence-based marker development and genotyping methods along with their implications for potato research and breeding in the post-genomics era.


July 7, 2019

The state of whole-genome sequencing

Over the last decade, a technological paradigm shift has slashed the cost of DNA sequencing by over five orders of magnitude. Today, the cost of sequencing a human genome is a few thousand dollars, and it continues to fall. Here, we review the most cost-effective platforms for whole-genome sequencing (WGS) as well as emerging technologies that may displace or complement these. We also discuss the practical challenges of generating and analyzing WGS data, and how WGS has unlocked new strategies for discovering genes and variants underlying both rare and common human diseases.


July 7, 2019

Fragmentation of surface adsorbed and aligned DNA molecules using soft lithography for next-generation sequencing

In this study, the enzymatic in situ cutting of linearized DNA molecules at approximately 11 kbp intervals is demonstrated using a soft lithography technique. The ultimate goal is to provide a general ordered cutting method to greatly simplify the assembly process. DNA was stretched onto PMMA (Poly methyl methacrylate) coated silicon by withdrawing the substrate from a DNA solution (a process termed “combing”). The stretched lambda DNA could be linearly cut with a soft lithography stamp used to selectively apply DNase I. After cutting the DNA on the substrate, the DNA fragments are removed from the surface by incubating PMMA in the commercial NEBuffer 3.1 at 75°C. The recovered fragments desorbed into the buffer and were sequenced using the PacBio RS II sequencer without an amplification step. The mean coverage was 2870X for the approximately 11 kbp fragmented sample and 100% of the lambda genome was sequenced. Methods to extend of the technique to ordered fragmentation are discussed.


July 7, 2019

Two orangutan species have evolved different KIR alleles and haplotypes.

The immune and reproductive functions of human NK cells are regulated by interactions of the C1 and C2 epitopes of HLA-C with C1-specific and C2-specific lineage III killer cell Ig-like receptors (KIR). This rapidly evolving and diverse system of ligands and receptors is restricted to humans and great apes. In this context, the orangutan has particular relevance because it represents an evolutionary intermediate, one having the C1 epitope and corresponding KIR but lacking the C2 epitope. Through a combination of direct sequencing, KIR genotyping, and data mining from the Great Ape Genome Project, we characterized the KIR alleles and haplotypes for panels of 10 Bornean orangutans and 19 Sumatran orangutans. The orangutan KIR haplotypes have between 5 and 10 KIR genes. The seven orangutan lineage III KIR genes all locate to the centromeric region of the KIR locus, whereas their human counterparts also populate the telomeric region. One lineage III KIR gene is Bornean specific, one is Sumatran specific, and five are shared. Of 12 KIR gene-content haplotypes, 5 are Bornean specific, 5 are Sumatran specific, and 2 are shared. The haplotypes have different combinations of genes encoding activating and inhibitory C1 receptors that can be of higher or lower affinity. All haplotypes encode an inhibitory C1 receptor, but only some haplotypes encode an activating C1 receptor. Of 130 KIR alleles, 55 are Bornean specific, 65 are Sumatran specific, and 10 are shared. Copyright © 2017 by The American Association of Immunologists, Inc.


July 7, 2019

Lactobacillus allii sp. nov. isolated from scallion kimchi.

A novel strain of lactic acid bacteria, WiKim39T, was isolated from a scallion kimchi sample consisting of fermented chili peppers and vegetables. The isolate was a Gram-positive, rod-shaped, non-motile, catalase-negative and facultatively anaerobic lactic acid bacterium. Phylogenetic analysis of the 16S rRNA gene sequence showed that strain WiKim39T belonged to the genus Lactobacillus, and shared 97.1-98.2?%?pair-wise sequence similarities with related type strains, Lactobacillus nodensis, Lactobacillus insicii, Lactobacillus versmoldensis, Lactobacillus tucceti and Lactobacillus furfuricola. The G+C?content of the strain based on its genome sequence was 35.3?mol%. The ANI values between WiKim39T and the closest relatives were lower than 80?%. Based on the phenotypic, biochemical, and phylogenetic analyses, strain WiKim39T represents a novel species of the genus Lactobacillus, for which the name Lactobacillus allii sp. nov. is proposed. The type strain is WiKim39T (=KCTC 21077T=JCM 31938T).


July 7, 2019

Pathogenicity and whole genome sequence analysis of a Pseudorabies virus strain FJ-2012 isolated from Fujian, Southern China.

The outbreaks of pseudorabies have been frequently reported in Bartha-K61-vaccinated farms in China since 2011. To study the pathogenicity and evolution of the circulating pseudorabies viruses in Fujian Province, mainland China, we isolated and sequenced the whole genome of a wild-type pseudorabies virus strain named “FJ-2012.” We then conducted a few downstream bioinformatics analyses including phylogenetic analysis and pathogenic analysis and used the virus to infect 6 pseudorabies virus-free piglets. FJ-2012-infected piglets developed symptoms like high body temperature and central nervous system disorders and had high mortality rate. In addition, we identified typical micropathological changes such as multiple gross lesions in infected piglets through pathological analysis and conclude that the FJ-2012 genome is significantly different from known pseudorabies viruses, in which insertions, deletions, and substitutions are observed in multiple immune and virulence genes. In summary, this study shed lights on the molecular basis of the prevalence and pathology of the pseudorabies virus strain FJ-2012. The genome of FJ-2012 could be used as a reference to study the evolution of pseudorabies viruses, which is critical to the vaccine development of new emerging pseudorabies viruses.


July 7, 2019

Evaluation of the impact of ul54 gene-deletion on the global transcription and DNA replication of pseudorabies virus.

Pseudorabies virus (PRV) is an animal alphaherpesvirus with a wide host range. PRV has 67 protein-coding genes and several non-coding RNA molecules, which can be classified into three temporal groups, immediate early, early and late classes. The ul54 gene of PRV and its homolog icp27 of herpes simplex virus have a multitude of functions, including the regulation of viral DNA synthesis and the control of the gene expression. Therefore, abrogation of PRV ul54 function was expected to exert a significant effect on the global transcriptome and on DNA replication. Real-time PCR and real-time RT-PCR platforms were used to investigate these presumed effects. Our analyses revealed a drastic impact of the ul54 mutation on the genome-wide expression of PRV genes, especially on the transcription of the true late genes. A more than two hour delay was observed in the onset of DNA replication, and the amount of synthesized DNA molecules was significantly decreased in comparison to the wild-type virus. Furthermore, in this work, we were able to successfully demonstrate the utility of long-read SMRT sequencing for genotyping of mutant viruses.


July 7, 2019

Rapid genetic and developmental morphological change following extreme celerity

Proximate environmental effects on metamorphosis have been explored in many vertebrate systems, but less attention has been devoted to how the environment affects developmental morphological change in mammals. Understanding proximate environmental effects on mammalian morphological change, particularly changes involving skin replacement, may aid in the design of therapeutic strategies to address severe burn or other debilitating injuries. Here, we specifically explore effects of celerity broadly, and we present results showing rapid change in mammalian morphological development following encountering maximum celerity. Morphological changes were pronounced within 96 hours and included at least partial regeneration of skin and organs as well as an elevated somatic mutation rate. Significantly, this high mutation rate did not result in detectable loss of fertility or viability of offspring. Overall, our findings strongly suggest that extreme celerity, an environmental factor rarely considered, can produce strikingly rapid developmental changes in morphology even in mammalian systems and open the door to future studies on the impact of celerity on genetics and morphology.


July 7, 2019

Systems biology analysis of the key genes of surfactin production in Bacillus subtilis MJ01 (isolated from soil contaminated oil in south of Iran), spizizenii, and 168 isolates

Applying microorganism in oil recovery has attracted attentions recently. Surfactin produced by Bacillus subtilis is widely used industrially in a range of industrial applications in pharmecutical and environmental sectors. Little information about molecular mechanism of suffactin compound is available. In this study, we performed promoter and network analysis of surfactin production genes in Bacillus subtilis subsp. MJ01 (isolated from oil contaminated soil in South of Iran), spizizenii and 168. Our analysis revealed that comQ and comX are the genes with sequence alterations among these three strains of Bacillus subtilis and are involved in surfactin production. Promoter analysis indicated that lrp, argR, rpoD, purr and ihf are overrepresented and have the highest number of transcription factor binding sites (TFBs) on the key surfactin production genes in all 3 strains. Also the pattern of TFBs among these three strains was completely different. Interestingly, there is distinct difference between 168, spizizenii and MJ01 in their frequency of TFs that activate genes involve in surfactin production. Attribute weighting algorithms and decision tree analysis revealed ihf, rpoD and flHCD as the most important TF among surfactin production. Network analysis identified two significant network modules. The first one consists of key genes involved in surfactin production and the second module includes key TFs, involved in regulation of surfactin production. Our findings enhance understanding the molecular mechanism of surfactin production through systems biology analysis.


July 7, 2019

Pectobacterium polaris sp. nov., isolated from potato (Solanum tuberosum).

The genus Pectobacterium, which belongs to the bacterial family Enterobacteriaceae, contains numerous species that cause soft rot diseases in a wide range of plants. The species Pectobacterium carotovorum is highly heterogeneous, indicating a need for re-evaluation and a better classification of the species. PacBio was used for sequencing of two soft-rot-causing bacterial strains (NIBIO1006T and NIBIO1392), initially identified as P. carotovorumstrains by fatty acid analysis and sequencing of three housekeeping genes (dnaX, icdA and mdh). Their taxonomic relationship to other Pectobacterium species was determined and the distance from any described species within the genus Pectobacterium was less than 94?% average nucleotide identity (ANI). Based on ANI, phylogenetic data and genome-to-genome distance, strains NIBIO1006T, NIBIO1392 and NCPPB3395 are suggested to represent a novel species of the genus Pectobacterium, for which the name Pectobacterium polaris sp. nov. is proposed. The type strain is NIBIO1006T (=DSM 105255T=NCPPB 4611T).


July 7, 2019

Complete genome sequence of Lactobacillus plantarum JBE245 isolated from Meju

Lactobacillus plantarum is widely found in fermented foods and has various phenotypic and genetic characteristics to adapt to the environment. Here we report the complete annotated genome sequence of the L. plantarum strain JBE245 (= KCCM43243) isolated for malolactic fermentation of apple juice. The genome comprises a single circular 3,262,611 bp chromosome with 2907 coding regions, 45 pseudogenes, and 91 RNA genes. The genome contains 4 malate dehydrogenase genes, 3 malate permease genes and various types of plantaricin-synthesizing genes. These genetic traits meet the selection criteria of the strains that should prevent the spoilage of apple juice during fermentation and efficiently convert malate to lactic acid.


July 7, 2019

Linear peptides are the major products of a biosynthetic pathway that encodes for cyclic depsipeptides.

Three new dentigerumycin analogues are produced by Streptomyces sp. M41, a bacterium isolated from a South African termite, Macrotermes natalensis. The structures of the complex nonribosomal peptide synthetase-polyketide synthase (NRPS/PKS) hybrid compounds were determined by 1D- and 2D-NMR spectroscopy, high-resolution mass spectrometry, and circular dichroism (CD) spectroscopy. Both cyclic and linear peptides are reported, and the genetic organization of the NRPS modules within the biosynthetic gene cluster accounts for the observed structural diversity.


July 7, 2019

Integrating transcriptomic and proteomic data for accurate assembly and annotation of genomes.

Complementing genome sequence with deep transcriptome and proteome data could enable more accurate assembly and annotation of newly sequenced genomes. Here, we provide a proof-of-concept of an integrated approach for analysis of the genome and proteome of Anopheles stephensi, which is one of the most important vectors of the malaria parasite. To achieve broad coverage of genes, we carried out transcriptome sequencing and deep proteome profiling of multiple anatomically distinct sites. Based on transcriptomic data alone, we identified and corrected 535 events of incomplete genome assembly involving 1196 scaffolds and 868 protein-coding gene models. This proteogenomic approach enabled us to add 365 genes that were missed during genome annotation and identify 917 gene correction events through discovery of 151 novel exons, 297 protein extensions, 231 exon extensions, 192 novel protein start sites, 19 novel translational frames, 28 events of joining of exons, and 76 events of joining of adjacent genes as a single gene. Incorporation of proteomic evidence allowed us to change the designation of more than 87 predicted “noncoding RNAs” to conventional mRNAs coded by protein-coding genes. Importantly, extension of the newly corrected genome assemblies and gene models to 15 other newly assembled Anopheline genomes led to the discovery of a large number of apparent discrepancies in assembly and annotation of these genomes. Our data provide a framework for how future genome sequencing efforts should incorporate transcriptomic and proteomic analysis in combination with simultaneous manual curation to achieve near complete assembly and accurate annotation of genomes.© 2017 Prasad et al.; Published by Cold Spring Harbor Laboratory Press.


July 7, 2019

Letting go: bacterial genome reduction solves the dilemma of adapting to predation mortality in a substrate-restricted environment.

Resource limitation and predation mortality are major determinants of microbial population dynamics, and optimization for either aspect is considered to imply a trade-off with respect to the other. Adaptation to these selective factors may, moreover, lead to disadvantages at rich growth conditions. We present an example of a concomitant evolutionary optimization to both, substrate limitation and predation in an aggregate-forming freshwater bacterial isolate, and we elucidate an underlying genomic mechanism. Bacteria were propagated in serial batch culture in a nutrient-restricted environment either with or without a bacterivorous flagellate. Strains isolated after 26 growth cycles of the predator-prey co-cultures formed as much total biomass as the ancestor at ancestral growth conditions, albeit largely reallocated to cell aggregates. A ~273?kbp genome fragment was lost in three strains that had independently evolved with predators. These strains had significantly higher growth yield on substrate-restricted media than others that were isolated from the same treatment before the excision event. Under predation pressure, the isolates with the deletion outcompeted both, the ancestor and the strains evolved without predators even at rich growth conditions. At the same time, genome reduction led to a growth disadvantage in the presence of benzoate due to the loss of the respective degradation pathway, suggesting that niche constriction might be the price for the bidirectional optimization.


July 7, 2019

Institutional profile: translational pharmacogenomics at the Icahn School of Medicine at Mount Sinai.

For almost 50 years, the Icahn School of Medicine at Mount Sinai has continually invested in genetics and genomics, facilitating a healthy ecosystem that provides widespread support for the ongoing programs in translational pharmacogenomics. These programs can be broadly cataloged into discovery, education, clinical implementation and testing, which are collaboratively accomplished by multiple departments, institutes, laboratories, companies and colleagues. Focus areas have included drug response association studies and allele discovery, multiethnic pharmacogenomics, personalized genotyping and survey-based education programs, pre-emptive clinical testing implementation and novel assay development. This overview summarizes the current state of translational pharmacogenomics at Mount Sinai, including a future outlook on the forthcoming expansions in overall support, research and clinical programs, genomic technology infrastructure and the participating faculty.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.