Menu
July 7, 2019  |  

Improved PKS gene expression with strong endogenous promoter resulted in geldanamycin yield increase.

The type I polyketide geldanamycin is a potent anti-tumor reagent. Its biosynthesis includes three steps: the biosynthesis of precursors, such as 3-amino-5-hydroxybenzoic acid (AHBA), the polyketide synthase (PKS) chain extension, and the post-PKS modifications. According to the genomic and transcriptomic analysis, the PKS chain extension was deduced to be the rate-limiting step for geldanamycin production in Streptomyces hygroscopicus XM201. In order to improve the expression of PKS genes, a strong endogenous promoter 5063p was obtained based on the transcriptomic analysis and XylE enzymatic assay. By replacing the native PKS promoter gdmA1p with 5063p, the expression of the PKS genes during geldanamycin fermentation was increased by 4-141-folds, and the geldanamycin yield was increased by 39%. Interestingly, AHBA feeding experiment showed that the supply of AHBA in turn become a new rate-limiting factor for geldanamycin production. Further combined overexpression of the 6-gene AHBA biosynthetic cassette and PKS genes increased the yield of geldanamycin by 88%, from 773?mg?L(-1) of the wild-type to 1450?mg?L(-1) in the derived strain. Our results suggested that improved expression of all PKS genes in a particular biosynthetic gene cluster is important for the yield increase of the corresponding polyketide natural product.© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.


July 7, 2019  |  

Complete genome sequence of Streptomyces sp. TN58, a producer of acyl alpha-L-rhamnopyranosides.

Streptomyces sp. TN58, isolated from a Tunisian soil sample, produces several natural products, including acyl alpha-l-rhamnopyranosides. It possesses a 7.6-Mb linear chromosome. This is, to our knowledge, the first genome sequence of a microorganism known to produce acyl alpha-l-rhamnopyranosides, and it will be helpful to study the biosynthesis of these specialized metabolites. Copyright © 2017 Najah et al.


July 7, 2019  |  

The complete genome sequence of Streptomyces autolyticus CGMCC 0516, the producer of geldanamycin, autolytimycin, reblastatin and elaiophylin.

Streptomyces autolyticus CGMCC 0516 produces the anti-tumor benzoquinone ansamycins geldanamycin, autolytimycin, and reblastatin and the 16-membered macrodiolide elaiophylin. Here, we report the complete genome sequence of S. autolyticus CGMCC 0516, which consists of a 10,029,028bp linear chromosome and seven circular plasmids. Fifty-seven putative biosynthetic gene clusters for secondary metabolites were found. The geldanamycin, autolytimycin, and reblastatin biosynthetic gene clusters were located on the left arm (2.06-2.15Mb) of the chromosome, and the elaiophylin gene cluster was located on the right arm (9.45-9.53Mb). Twenty-one putative gene clusters with high or moderate similarity to important antibiotic biosynthetic gene clusters were found, including the antitumor agents echoside, bafilomycin, hygrocin, and toxoflavin; the antibacterial/antifungal agents nigericin, skyllamycin, kanamycin, naphthomycin, eco-02301, and bottromycin A2; the immunosuppressants meridamycin and brasilicardin A; the anti-inflammatory agent cyclooctatin; and the acute iron poisoning medication desferrioxamine B. The genome sequence reported here will enable us to study the biosynthetic mechanism of these important antibiotics and will facilitate the discovery of novel secondary metabolites with potential applications to human health. Copyright © 2017 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Draft genome sequence of the plant pathogen Streptomyces sp. strain 11-1-2.

Streptomyces sp. strain 11-1-2 is a Gram-positive filamentous bacterium that was isolated from a common scab lesion on a potato tuber. The strain is highly pathogenic to plants but does not produce the virulence-associated Streptomyces phytotoxin thaxtomin A. Here, we report the draft genome sequence of Streptomyces sp. 11-1-2. Copyright © 2017 Bown and Bignell.


July 7, 2019  |  

Tryptorubin A: A polycyclic peptide from a fungus-derived Streptomycete.

Fungus-growing ants engage in complex symbiotic relationships with their fungal crop, specialized fungal pathogens, and bacteria that provide chemical defenses. In an effort to understand the evolutionary origins of this multilateral system, we investigated bacteria isolated from fungi. One bacterial strain (Streptomyces sp. CLI2509) from the bracket fungus Hymenochaete rubiginosa, produced an unusual peptide, tryptorubin A, which contains heteroaromatic links between side chains that give it a rigid polycyclic globular structure. The three-dimensional structure was determined by NMR and MS, including a (13)C-(13)C COSY of isotopically enriched material, degradation, derivatives, and computer modeling. Whole genome sequencing identified a likely pair of biosynthetic genes responsible for tryptorubin A’s linear hexapeptide backbone. The genome also revealed the close relationship between CLI2509 and Streptomyces sp. SPB78, which was previously implicated in an insect-bacterium symbiosis.


July 7, 2019  |  

The complete genome sequence of Streptomyces albolongus YIM 101047, the producer of novel bafilomycins and odoriferous sesquiterpenoids.

Streptomyces albolongus YIM 101047 produces novel bafilomycins and odoriferous sesquiterpenoids with cytotoxic and antimicrobial activities. Here, we report the complete genome sequence of S. albolongus YIM 101047, which consists of an 8,027,788bp linear chromosome. Forty-six putative biosynthetic gene clusters of secondary metabolites were found. The sesquiterpenoid gene cluster was on the left arm (0.09-0.10Mb), and the bafilomycin biosynthetic gene cluster was on the right arm (7.46-7.64Mb) of the chromosome. Twenty-two putative gene clusters with high or moderate similarity to important antibiotic biosynthetic gene clusters were found, including the antitumor agents bafilomycin, epothilone and hedamycin; the antibacterial/antifungal agents clavulanic acid, collismycin A, frontalamides, kanamycin, streptomycin and streptothricin; the protein phosphatase inhibitor RK-682; and the acute iron poisoning medication desferrioxamine B. The genome sequence reported here will enable us to study the biosynthetic mechanism of these important antibiotics and will facilitate the discovery of novel secondary metabolites with potential applications to human health. Copyright © 2017 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Biosynthesis of ilamycins featuring unusual building blocks and engineered production of enhanced anti-tuberculosis agents.

Tuberculosis remains one of the world’s deadliest communicable diseases, novel anti-tuberculosis agents are urgently needed due to severe drug resistance and the co-epidemic of tuberculosis/human immunodeficiency virus. Here, we show the isolation of six anti-mycobacterial ilamycin congeners (1-6) bearing rare L-3-nitro-tyrosine and L-2-amino-4-hexenoic acid structural units from the deep sea-derived Streptomyces atratus SCSIO ZH16. The biosynthesis of the rare L-3-nitrotyrosine and L-2-amino-4-hexenoic acid units as well as three pre-tailoring and two post-tailoring steps are probed in the ilamycin biosynthetic machinery through a series of gene inactivation, precursor chemical complementation, isotope-labeled precursor feeding experiments, as well as structural elucidation of three intermediates (6-8) from the respective mutants. Most impressively, ilamycins E1/E2, which are produced in high titers by a genetically engineered mutant strain, show very potent anti-tuberculosis activity with an minimum inhibitory concentration value ˜9.8?nM to Mycobacterium tuberculosis H37Rv constituting extremely potent and exciting anti-tuberculosis drug leads.Tuberculosis (TB) remains one of the world’s deadliest communicable diseases, novel anti-TB agents are urgently needed due to severe drug resistance and the co-epidemic of TB/HIV. Here, the authors show that anti-mycobacterial ilamycin congeners bearing unusual structural units possess extremely potent anti-tuberculosis activities.


July 7, 2019  |  

High-quality draft genome sequence of Streptomyces agglomeratus 5-1-8 with strong anti-MRSA ability, isolated from the frozen soil of Tibet in China

Streptomyces agglomeratus 5-1-8 with strong anti methicillin-resistant Staphylococcus aureus (MRSA) ability, isolated from the frozen soil of Tibet in China, has a strong ability to kill the multi-drugs-resistant MRSA. To identify the second-ary metabolism ability of this strain, we describe here the phenotypic characteristics of this strain, along with its high-quality draft genome sequence, its annotation, and analysis. The 7.1M draft genome encodes 6,284 putative open reading frames (ORFs), of which 4,416 ORFs were assigned with clusters of orthologous genes (COG) categories. Also, 65 tRNA genes and 24 rRNA operons were identified. The genome contains 12 gene clusters involved in antibiotics production and 1 gene cluster involved in anticancer-compounds production; 4 gene clusters belong to polyketides and nonribosomal peptides, 1 gene cluster belong to the butyrolactone, 4 gene clusters belong to the bacteriocin or lantipeptide, and 3 gene clusters belong to the others. This genome-sequence data will facilitate efforts to probe the potential of new antibiotics to kill multi-drugs-resistant MRSA.


July 7, 2019  |  

Linear peptides are the major products of a biosynthetic pathway that encodes for cyclic depsipeptides.

Three new dentigerumycin analogues are produced by Streptomyces sp. M41, a bacterium isolated from a South African termite, Macrotermes natalensis. The structures of the complex nonribosomal peptide synthetase-polyketide synthase (NRPS/PKS) hybrid compounds were determined by 1D- and 2D-NMR spectroscopy, high-resolution mass spectrometry, and circular dichroism (CD) spectroscopy. Both cyclic and linear peptides are reported, and the genetic organization of the NRPS modules within the biosynthetic gene cluster accounts for the observed structural diversity.


July 7, 2019  |  

Deciphering the streamlined genome of Streptomyces xiamenensis 318 as the producer of the anti-fibrotic drug candidate xiamenmycin.

Streptomyces xiamenensis 318, a moderate halophile isolated from a mangrove sediment, produces the anti-fibrotic compound xiamenmycin. The whole genome sequence of strain 318 was obtained through long-read single-molecule real-time (SMRT) sequencing, high-throughput Illumina HiSeq and 454 pyrosequencing technologies. The assembled genome comprises a linear chromosome as a single contig of 5,961,401-bp, which is considerably smaller than other reported complete genomes of the genus Streptomyces. Based on the antiSMASH pipeline, a total of 21?gene clusters were predicted to be involved in secondary metabolism. The gene cluster responsible for the biosynthesis of xiamenmycin resides in a strain-specific 61,387-bp genomic island belonging to the left-arm region. A core metabolic network consisting of 104 reactions that supports xiamenmycin biosynthesis was constructed to illustrate the necessary precursors derived from the central metabolic pathway. In accordance with the finding of a putative ikarugamycin gene cluster in the genome, the targeted chemical profiling of polycyclic tetramate macrolactams (PTMs) resulted in the identification of ikarugamycin. A successful genome mining for bioactive molecules with different skeletons suggests that the naturally minimized genome of S. xiamenensis 318 could be used as a blueprint for constructing a chassis cell with versatile biosynthetic capabilities for the production of secondary metabolites.


July 7, 2019  |  

Streptomyces thermoautotrophicus does not fix nitrogen.

Streptomyces thermoautotrophicus UBT1 has been described as a moderately thermophilic chemolithoautotroph with a novel nitrogenase enzyme that is oxygen-insensitive. We have cultured the UBT1 strain, and have isolated two new strains (H1 and P1-2) of very similar phenotypic and genetic characters. These strains show minimal growth on ammonium-free media, and fail to incorporate isotopically labeled N2 gas into biomass in multiple independent assays. The sdn genes previously published as the putative nitrogenase of S. thermoautotrophicus have little similarity to anything found in draft genome sequences, published here, for strains H1 and UBT1, but share >99% nucleotide identity with genes from Hydrogenibacillus schlegelii, a draft genome for which is also presented here. H. schlegelii similarly lacks nitrogenase genes and is a non-diazotroph. We propose reclassification of the species containing strains UBT1, H1, and P1-2 as a non-Streptomycete, non-diazotrophic, facultative chemolithoautotroph and conclude that the existence of the previously proposed oxygen-tolerant nitrogenase is extremely unlikely.


July 7, 2019  |  

Complete genome of Streptomyces hygroscopicus subsp. limoneus KCTC 1717 (=KCCM 11405), a soil bacterium producing validamycin and diverse secondary metabolites.

Streptomyces hygroscopicus subsp. limoneus is a Gram-positive, aerobic, aerial mycelial, spore-forming bacterium that was first isolated from a soil sample in Akashi City, Hyogo Prefecture, Japan. We here report the complete genome of S. hygroscopicus subsp. limoneus KCTC 1717 (=KCCM 11405=IFO 12704=ATCC 21432), which consists of 10,537,932bp (G+C content of 71.96%) with two linear chromosomes, 8983 protein-coding genes, 67 tRNAs and 6 rRNA operons. Genes related to biosynthesis of validamycin, valienamine and diverse secondary metabolites were detected in this genome. Genomic data is thus expected to considerably improve our understanding of how industrially important aminocyclitols are biosynthesized by microbial cells. Copyright © 2015 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Metabolomics-guided analysis of isocoumarin production by Streptomyces species MBT76 and biotransformation of flavonoids and phenylpropanoids.

Actinomycetes produce the majority of the antibiotics currently in clinical use. The efficiency of antibiotic production is affected by multiple factors such as nutrients, pH, temperature and growth phase. Finding the optimal harvesting time is crucial for successful isolation of the desired bioactive metabolites from actinomycetes, but for this conventional chemical analysis has limitations due to the metabolic complexity. This study explores the utility of NMR-based metabolomics for (1) optimizing fermentation time for the production of known and/or unknown bioactive compounds produced by actinomycetes; (2) elucidating the biosynthetic pathway for microbial natural products; and (3) facilitating the biotransformation of nature-abundant chemicals.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.