fbpx
X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Sunday, July 7, 2019

The genome sequence of Streptomyces lividans 66 reveals a novel tRNA-dependent peptide biosynthetic system within a metal-related genomic island.

The complete genome sequence of the original isolate of the model actinomycete Streptomyces lividans 66, also referred to as 1326, was deciphered after a combination of next-generation sequencing platforms and a hybrid assembly pipeline. Comparative analysis of the genomes of S. lividans 66 and closely related strains, including S. coelicolor M145 and S. lividans TK24, was used to identify strain-specific genes. The genetic diversity identified included a large genomic island with a mosaic structure, present in S. lividans 66 but not in the strain TK24. Sequence analyses showed that this genomic island has an anomalous (G + C) content, suggesting…

Read More »

Sunday, July 7, 2019

Genomic data mining of the marine actinobacteria Streptomyces sp. H-KF8 unveils insights into multi-stress related genes and metabolic pathways involved in antimicrobial synthesis.

Streptomyces sp. H-KF8 is an actinobacterial strain isolated from marine sediments of a Chilean Patagonian fjord. Morphological characterization together with antibacterial activity was assessed in various culture media, revealing a carbon-source dependent activity mainly against Gram-positive bacteria (S. aureus and L. monocytogenes). Genome mining of this antibacterial-producing bacterium revealed the presence of 26 biosynthetic gene clusters (BGCs) for secondary metabolites, where among them, 81% have low similarities with known BGCs. In addition, a genomic search in Streptomyces sp. H-KF8 unveiled the presence of a wide variety of genetic determinants related to heavy metal resistance (49 genes), oxidative stress (69 genes) and…

Read More »

Sunday, July 7, 2019

Genome sequence of Streptomyces sp. H-KF8, a marine actinobacterium isolated from a northern Chilean Patagonian fjord.

Streptomyces sp. H-KF8 is a fjord-derived marine actinobacterium capable of producing antimicrobial activity. Streptomyces sp. H-KF8 was isolated from sediments of the Comau fjord, located in the northern Chilean Patagonia. Here, we report the 7.7-Mb genome assembly, which represents the first genome of a Chilean marine actinobacterium. Copyright © 2017 Undabarrena et al.

Read More »

Sunday, July 7, 2019

Plant growth-promoting effect and genomic analysis of the beneficial endophyte Streptomyces sp. KLBMP 5084 isolated from halophyte Limonium sinense

Background and aims: Soil salinity is a worldwide environmental problem that can hinder plant development and therefore negatively impact crop production. Inoculation of halophytic plants with plant growth-promoting (PGP) actinobacteria has been suggested as one strategy to improve salt tolerance. Here we performed a glasshouse experiment to test the effect of a PGP halotolerant endophytic actinomycete strain, KLBMP 5084 on the performance of the halophyte Limonium sinense under conditions of salt stress. Methods: Strain KLBMP 5084 was identified and screened for multiple PGP traits. The complete genome of strain KLBMP 5084 was sequenced and analyzed. L. sinense control seedlings (no…

Read More »

Sunday, July 7, 2019

Complete genome sequencing of Streptomyces sp. strain MOE7, which produces an extracellular polysaccharide with antioxidant and antitumor activities.

Streptomyces sp. strain MOE7 is a Gram-positive filamentous bacterium isolated from agricultural soil in Columbia, Missouri, USA. Strain MOE7 produces an extracellular polysaccharide with antioxidant and antitumor activities. Through PacBio RSII sequencing, the MOE7 genome was found to be a linear chromosome of 8,399,509 bp with 6,782 protein-coding sequences. Copyright © 2017 Elnahas et al.

Read More »

Sunday, July 7, 2019

Genome sequences for Streptomyces spp. isolated from disease-suppressive soils and long-term ecological research sites.

We report here the high-quality genome sequences of three Streptomyces spp. isolated as part of a long-term study of microbial soil ecology. Streptomyces sp. strain GS93-23 was isolated from naturally disease-suppressive soil (DSS) in Grand Rapids, MN, and Streptomyces sp. strains S3-4 and 3211-3 were isolated from experimental plots in the Cedar Creek Ecosystem Science Reserve (CCESR). Copyright © 2017 Heinsch et al.

Read More »

Sunday, July 7, 2019

Identification and characterization of a biosynthetic gene cluster for tryptophan dimers in deep sea-derived Streptomyces sp. SCSIO 03032.

Tryptophan dimers (TDs) are an important class of natural products with diverse bioactivities and share conserved biosynthetic pathways. We report the identification of a partial gene cluster (spm) responsible for the biosynthesis of a class of unusual TDs with non-planar skeletons including spiroindimicins (SPMs), indimicins (IDMs), and lynamicins (LNMs) from the deep-sea derived Streptomyces sp. SCSIO 03032. Bioinformatics analysis, targeted gene disruptions, and heterologous expression studies confirmed the involvement of the spm gene cluster in the biosynthesis of SPM/IDM/LNMs, and revealed the indispensable roles for the halogenase/reductase pair SpmHF, the amino acid oxidase SpmO, and the chromopyrrolic acid (CPA) synthase…

Read More »

Sunday, July 7, 2019

Identification of a gene cluster for telomestatin biosynthesis and heterologous expression using a specific promoter in a clean host.

Telomestatin, a strong telomerase inhibitor with G-quadruplex stabilizing activity, is a potential therapeutic agent for treating cancers. Difficulties in isolating telomestatin from microbial cultures and in chemical synthesis are bottlenecks impeding the wider use. Therefore, improvement in telomestatin production and structural diversification are required for further utilization and application. Here, we discovered the gene cluster responsible for telomestatin biosynthesis, and achieved production of telomestatin by heterologous expression of this cluster in the engineered Streptomyces avermitilis SUKA strain. Utilization of an optimal promoter was essential for successful production. Gene disruption studies revealed that the tlsB, tlsC, and tlsO-T genes play key…

Read More »

Sunday, July 7, 2019

Formicamycins, antibacterial polyketides produced by Streptomyces formicae isolated from African Tetraponera plant-ants.

We report a new Streptomyces species named S. formicae that was isolated from the African fungus-growing plant-ant Tetraponera penzigi and show that it produces novel pentacyclic polyketides that are active against MRSA and VRE. The chemical scaffold of these compounds, which we have called the formicamycins, is similar to the fasamycins identified from the heterologous expression of clones isolated from environmental DNA, but has significant differences that allow the scaffold to be decorated with up to four halogen atoms. We report the structures and bioactivities of 16 new molecules and show, using CRISPR/Cas9 genome editing, that biosynthesis of these compounds…

Read More »

Sunday, July 7, 2019

Identification of three homologous latex-clearing protein (lcp) genes from the genome of Streptomyces sp. strain CFMR 7.

Rubber materials have greatly contributed to human civilization. However, being a polymeric material does not decompose easily, it has caused huge environmental problems. On the other hand, only few bacteria are known to degrade rubber, with studies pertaining them being intensively focusing on the mechanism involved in microbial rubber degradation. The Streptomyces sp. strain CFMR 7, which was previously confirmed to possess rubber-degrading ability, was subjected to whole genome sequencing using the single molecule sequencing technology of the PacBio® RS II system. The genome was further analyzed and compared with previously reported rubber-degrading bacteria in order to identify the potential…

Read More »

Sunday, July 7, 2019

Draft genome sequence of Streptomyces scabrisporus NF3, an endophyte isolated from Amphipterygium adstringens.

We report the draft genome sequence of Streptomyces scabrisporus NF3, an endophyte isolated from Amphipterygium adstringens in Chiapas, Mexico. This strain produces a new modified linaridin peptide. The genome harbors at least 50 gene clusters for synthases of polyketide and nonribosomal peptides, suggesting a prospective production of various secondary metabolites. Copyright © 2017 Vazquez-Hernandez et al.

Read More »

Sunday, July 7, 2019

Complete genome sequence of a natural compounds producer, Streptomyces violaceus S21.

The complete genome sequence of Streptomyces violaceus strain S21, a valuable natural compounds producer isolated from the forest soil, is firstly presented here. The genome comprised 7.91M bp, with a G + C content of 72.65%. A range of genes involved in pathways of secondary product biosynthesis were predicted. The genome sequence is available at DDBJ/EMBL/Genbank under the accession number CP020570. This genome is annotated with 6856 predicted genes identifying the natural product biosynthetic gene clusters in S. violaceus.

Read More »

Sunday, July 7, 2019

Comparative genomic and regulatory analyses of natamycin production of Streptomyces lydicus A02.

Streptomyces lydicus A02 is used by industry because it has a higher natamycin-producing capacity than the reference strain S. natalensis ATCC 27448. We sequenced the complete genome of A02 using next-generation sequencing platforms, and to achieve better sequence coverage and genome assembly, we utilized single-molecule real-time (SMRT) sequencing. The assembled genome comprises a 9,307,519-bp linear chromosome with a GC content of 70.67%, and contained 8,888 predicted genes. Comparative genomics and natamycin biosynthetic gene cluster (BGC) analysis showed that BGC are highly conserved among evolutionarily diverse strains, and they also shared closer genome evolution compared with other Streptomyces species. Forty gene…

Read More »

1 2 3 4 5

Subscribe for blog updates:

Archives