X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Friday, July 19, 2019

Advantages of Single-Molecule Real-Time Sequencing in high-GC content genomes.

Next-generation sequencing has become the most widely used sequencing technology in genomics research, but it has inherent drawbacks when dealing with high-GC content genomes. Recently, single-molecule real-time sequencing technology (SMRT) was introduced as a third-generation sequencing strategy to compensate for this drawback. Here, we report that the unbiased and longer read length of SMRT sequencing markedly improved genome assembly with high GC content via gap filling and repeat resolution.

Read More »

Friday, July 19, 2019

Recently published Streptomyces genome sequences.

Many readers of this journal will need no introduction to the bacterial genus Streptomyces, which includes several hundred species, many of which produce biotechnologically useful secondary metabolites. The last 2 years have seen numerous publications describing Streptomyces genome sequences (Table?1), mostly as short genome announcements restricted to just 500 words and therefore allowing little description and analysis. Our aim in this current manuscript is to survey these recent publications and to dig a little deeper where appropriate. The genus Streptomyces is now one of the most highly sequenced, with 19 finished genomic sequences (Table?2) and a further 125 draft assemblies…

Read More »

Friday, July 19, 2019

Biosynthesis of the novel macrolide antibiotic anthracimycin.

We report the identification of the biosynthetic gene cluster for the unusual antibiotic anthracimycin (atc) from the marine derived producer strain Streptomyces sp. T676 isolated off St. John’s Island, Singapore. The 53?253 bps atc locus includes a trans-acyltransferase (trans-AT) polyketide synthase (PKS), and heterologous expression in Streptomyces coelicolor resulted in anthracimycin production. Analysis of the atc cluster revealed that anthracimycin is likely generated by four PKS gene products AtcC-AtcF without involvement of post-PKS tailoring enzymes, and a biosynthetic pathway is proposed. The availability of the atc cluster provides a basis for investigating the biosynthesis of anthracimycin and its subsequent bioengineering…

Read More »

Friday, July 19, 2019

Genome Update. Let the consumer beware: Streptomyces genome sequence quality.

A genome sequence assembly represents a model of a genome. This article explores some tools and methods for assessing the quality of an assembly, using publicly available data for Streptomyces species as the example. There is great variability in quality of assemblies deposited in GenBank. Only in a small minority of these assemblies are the raw data available, enabling full appraisal of the assembly quality. © 2015 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

Read More »

Friday, July 19, 2019

Next generation sequencing of Actinobacteria for the discovery of novel natural products.

Like many fields of the biosciences, actinomycete natural products research has been revolutionised by next-generation DNA sequencing (NGS). Hundreds of new genome sequences from actinobacteria are made public every year, many of them as a result of projects aimed at identifying new natural products and their biosynthetic pathways through genome mining. Advances in these technologies in the last five years have meant not only a reduction in the cost of whole genome sequencing, but also a substantial increase in the quality of the data, having moved from obtaining a draft genome sequence comprised of several hundred short contigs, sometimes of…

Read More »

Sunday, July 7, 2019

Active site and laminarin binding in glycoside hydrolase family 55.

The Carbohydrate Active Enzyme (CAZy) database indicates that glycoside hydrolase family 55 (GH55) contains both endo- and exo-ß-1,3-glucanases. The founding structure in the GH55 is PcLam55A from the white rot fungus Phanerochaete chrysosporium (Ishida, T., Fushinobu, S., Kawai, R., Kitaoka, M., Igarashi, K., and Samejima, M. (2009) Crystal structure of glycoside hydrolase family 55 ß-1,3-glucanase from the basidiomycete Phanerochaete chrysosporium. J. Biol. Chem. 284, 10100-10109). Here, we present high resolution crystal structures of bacterial SacteLam55A from the highly cellulolytic Streptomyces sp. SirexAA-E with bound substrates and product. These structures, along with mutagenesis and kinetic studies, implicate Glu-502 as the catalytic…

Read More »

Sunday, July 7, 2019

Identification and heterologous expression of the chaxamycin biosynthetic gene cluster from Streptomyces leeuwenhoekii.

Streptomyces leeuwenhoekii, isolated from the hyperarid Atacama Desert, produces the new ansamycin-like compounds chaxamycins A to D, which possess potent antibacterial activity and moderate antiproliferative activity. We report the development of genetic tools to manipulate S. leeuwenhoekii and the identification and partial characterization of the 80.2-kb chaxamycin biosynthesis gene cluster, which was achieved by both mutational analysis in the natural producer and heterologous expression in Streptomyces coelicolor A3(2) strain M1152. Restoration of chaxamycin production in a nonproducing ?cxmK mutant (cxmK encodes 3-amino-5-hydroxybenzoic acid [AHBA] synthase) was achieved by supplementing the growth medium with AHBA, suggesting that mutasynthesis may be a…

Read More »

Sunday, July 7, 2019

Draft genome sequence of Streptomyces sp. strain Wb2n-11, a desert isolate with broad-spectrum antagonism against soilborne phytopathogens.

Streptomyces sp. strain Wb2n-11, isolated from native desert soil, exhibited broad-spectrum antagonism against plant pathogenic fungi, bacteria, and nematodes. The 8.2-Mb draft genome reveals genes putatively responsible for its promising biocontrol activity and genes which enable the soil bacterium to directly interact beneficially with plants. Copyright © 2015 Köberl et al.

Read More »

Sunday, July 7, 2019

Complete genome sequence of Streptomyces sp. strain CFMR 7, a natural rubber degrading actinomycete isolated from Penang, Malaysia.

Streptomyces sp. strain CFMR 7, which naturally degrades rubber, was isolated from a rubber plantation. Whole genome sequencing and assembly resulted in 2 contigs with total genome size of 8.248 Mb. Two latex clearing protein (lcp) genes which are responsible for rubber degrading activities were identified. Copyright © 2015 Elsevier B.V. All rights reserved.

Read More »

Sunday, July 7, 2019

Complete genome sequence of Streptomyces ambofaciens ATCC 23877, the spiramycin producer.

Streptomyces ambofaciens ATCC23877 is a soil bacterium industrially exploited for the production of the macrolide spiramycin which is used in human medicine as an antibacterial and anti-toxoplasmosis chemical. Its genome consists of a 8.3Mbp linear chromosome and a 89kb circular plasmid. The complete genome sequence reported here will enable us to investigate Streptomyces genome evolution and to discover new secondary metabolites with potential applications notably in human medicine. Copyright © 2015 Elsevier B.V. All rights reserved.

Read More »

Sunday, July 7, 2019

Identification of the polyketide biosynthetic machinery for the indolizidine alkaloid cyclizidine.

The cyclizidine biosynthetic gene cluster was identified from Streptomyces NCIB 11649, which revealed the polyketide biosynthetic machinery for cyclizidine alkaloid biosynthesis. Both in vivo mutagenesis study and in vitro biochemical analysis provided insight into the timing and mechanism of the biosynthetic enzymes that produce cyclizidine-type indolizidine alkaloids.

Read More »

Sunday, July 7, 2019

Metabolomics-driven discovery of a prenylated isatin antibiotic produced by Streptomyces species MBT28.

Actinomycetes are a major source of antimicrobials, anticancer compounds, and other medically important products, and their genomes harbor extensive biosynthetic potential. Major challenges in the screening of these microorganisms are to activate the expression of cryptic biosynthetic gene clusters and the development of technologies for efficient dereplication of known molecules. Here we report the identification of a previously unidentified isatin-type antibiotic produced by Streptomyces sp. MBT28, following a strategy based on NMR-based metabolomics combined with the introduction of streptomycin resistance in the producer strain. NMR-guided isolation by tracking the target proton signal resulted in the characterization of 7-prenylisatin (1) with…

Read More »

Sunday, July 7, 2019

Draft genome sequence of marine actinomycete Streptomyces sp. strain NTK 937, producer of the benzoxazole antibiotic caboxamycin.

Streptomyces sp. strain NTK 937 is the producer of the benzoxazole antibiotic caboxamycin, which has been shown to exert inhibitory activity against Gram-positive bacteria, cytotoxic activity against several human tumor cell lines, and inhibition of the enzyme phosphodiesterase. In this genome announcement, we present a draft genome sequence of Streptomyces sp. NTK 937 in which we identified at least 35 putative secondary metabolite biosynthetic gene clusters. Copyright © 2014 Olano et al.

Read More »

1 2 3 5

Subscribe for blog updates:

Archives