July 7, 2019  |  

Complete genome sequence of Streptomyces venezuelae ATCC 15439, producer of the methymycin/pikromycin family of macrolide antibiotics, using PacBio technology.

Here, we report the complete genome sequence of Streptomyces venezuelae ATCC 15439, a producer of the methymycin/pikromycin family of macrolide antibiotics and a model host for natural product studies, obtained exclusively using PacBio sequencing technology. The 9.03-Mbp genome harbors 8,775 genes and 11 polyketide and nonribosomal peptide natural product gene clusters. Copyright © 2016 He et al.


July 7, 2019  |  

Biosynthetic genes for the tetrodecamycin antibiotics.

We recently described 13-deoxytetrodecamycin, a new member of the tetrodecamycin family of antibiotics. A defining feature of these molecules is the presence of a five-membered lactone called a tetronate ring. By sequencing the genome of a producer strain, Streptomyces sp. strain WAC04657, and searching for a gene previously implicated in tetronate ring formation, we identified the biosynthetic genes responsible for producing 13-deoxytetrodecamycin (the ted genes). Using the ted cluster in WAC04657 as a reference, we found related clusters in three other organisms: Streptomyces atroolivaceus ATCC 19725, Streptomyces globisporus NRRL B-2293, and Streptomyces sp. strain LaPpAH-202. Comparing the four clusters allowed us to identify the cluster boundaries. Genetic manipulation of the cluster confirmed the involvement of the ted genes in 13-deoxytetrodecamycin biosynthesis and revealed several additional molecules produced through the ted biosynthetic pathway, including tetrodecamycin, dihydrotetrodecamycin, and another, W5.9, a novel molecule. Comparison of the bioactivities of these four molecules suggests that they may act through the covalent modification of their target(s).The tetrodecamycins are a distinct subgroup of the tetronate family of secondary metabolites. Little is known about their biosynthesis or mechanisms of action, making them an attractive subject for investigation. In this paper we present the biosynthetic gene cluster for 13-deoxytetrodecamycin in Streptomyces sp. strain WAC04657. We identify related clusters in several other organisms and show that they produce related molecules. Copyright © 2016, American Society for Microbiology. All Rights Reserved.


July 7, 2019  |  

Complete genome sequence of the Streptomyces sp. strain CdTB01, a bacterium tolerant to cadmium.

Streptomyces sp. Strain CdTB01, which is tolerant to high concentrations of heavy metals, particularly cadmium, was isolated from soil contaminated with heavy metals. Two contigs with total genome size of 10.19Mb were identified in the whole genome sequencing and assembly, and numerous homologous genes known to be involved in heavy metal resistance were found in the genome. Copyright © 2016 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Use of genomic approaches in understanding the role of Actinomycetes as PGP in grain legumes

The advancement in molecular technologies has given a breakthrough to explore the untapped and novel microbial isolates for characterization in every aspect as we can consider microbes as an important primary natural store house for key secondary metabolites and enzymes. Actinomycetes are the most fruitful source of microorganisms for all types of bioactive secondary metabolites, including agroactive-antibiotic molecules that are best recognized and most valuable for their role in agriculture and industries. In agriculture, actinomycetes are used as biocontrol agents against some pests and pathogenic organisms as well as plant growth-promoting (PGP) agents for crops. Use of different molecular methods, e.g., metagenomics, metatranscriptomics, genetic fingerprinting, proteogenomics, and metaproteomics, are more significant for classifying and discovering the immense diversity in microbial population and for understanding their interactions with other abiotic and biotic environmental elements. The opportunity of accessing inexpensive sequencing techniques has led to the assemblies of copious genomic data for actinomycetes, such as Streptomyces and related species, with the goal of discovering novel bioactive metabolic and their utility as PGP; however, the use of actinomycetes in agriculture using genomic approaches is in its initial stages.


July 7, 2019  |  

Development of Streptomyces sp. FR-008 as an emerging chassis

Microbial-derived natural products are important in both the pharmaceutical industry and academic research. As the metabolic potential of original producer especially Streptomyces is often limited by slow growth rate, complicated cultivation profile, and unfeasible genetic manipulation, so exploring a Streptomyces as a super industrial chassis is valuable and urgent. Streptomyces sp. FR-008 is a fast-growing microorganism and can also produce a considerable amount of macrolide candicidin via modular polyketide synthase. In this study, we evaluated Streptomyces sp. FR-008 as a potential industrial-production chassis. First, PacBio sequencing and transcriptome analyses indicated that the Streptomyces sp. FR-008 genome size is 7.26 Mb, which represents one of the smallest of currently sequenced Streptomyces genomes. In addition, we simplified the conjugation procedure without heat-shock and pre-germination treatments but with high conjugation efficiency, suggesting it is inherently capable of accepting heterologous DNA. In addition, a series of promoters selected from literatures was assessed based on GusA activity in Streptomyces sp. FR-008. Compared with the common used promoter ermE*-p, the strength of these promoters comprise a library with a constitutive range of 60–860%, thus providing the useful regulatory elements for future genetic engineering purpose. In order to minimum the genome, we also target deleted three endogenous polyketide synthase (PKS) gene clusters to generate a mutant LQ3. LQ3 is thus an “updated” version of Streptomyces sp. FR-008, producing fewer secondary metabolites profiles than Streptomyces sp. FR-008. We believe this work could facilitate further development of Streptomyces sp. FR-008 for use in biotechnological applications.


July 7, 2019  |  

Complete genome sequence of Streptomyces parvulus 2297, integrating site-specifically with actinophage R4

Streptomyces parvulus 2297, which is a host for site-specific recombination according to actinophage R4, is derived from the type strain ATCC 12434. Species of S. parvulus are known as producers of polypeptide antibiotic actinomycins and have been considered for industrial applications. We herein report for the first time the complete genome sequence of S. parvulus 2297. Copyright © 2016 Nishizawa et al.


July 7, 2019  |  

Iteratively improving natamycin production in Streptomyces gilvosporeus by a large operon-reporter based strategy

Many high-value secondary metabolites are assembled by very large multifunctional polyketide synthases or non-ribosomal peptide synthetases encoded by giant genes, for instance, natamycin production in an industrial strain of Streptomyces gilvosporeus. In this study, a large operon reporter-based selection system has been developed using the selectable marker gene neo to report the expression both of the large polyketide synthase genes and of the entire gene cluster, thereby facilitating the selection of natamycin-overproducing mutants by iterative random mutagenesis breeding. In three successive rounds of mutagenesis and selection, the natamycin titer was increased by 110%, 230%, and 340%, respectively, and the expression of the whole biosynthetic gene cluster was correspondingly increased. An additional copy of the natamycin gene cluster was found in one overproducer. These findings support the large operon reporter-based selection system as a useful tool for the improvement of industrial strains utilized in the production of polyketides and non-ribosomal peptides. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.


July 7, 2019  |  

Complete genome sequence of Streptomyces formicae KY5, the formicamycin producer.

Here we report the complete genome of the new species Streptomyces formicae KY5 isolated from Tetraponera fungus growing ants. S. formicae was sequenced using the PacBio and 454 platforms to generate a single linear chromosome with terminal inverted repeats. Illumina MiSeq sequencing was used to correct base changes resulting from the high error rate associated with PacBio. The genome is 9.6 Mbps, has a GC content of 71.38% and contains 8162 protein coding sequences. Predictive analysis shows this strain encodes at least 45 gene clusters for the biosynthesis of secondary metabolites, including a type 2 polyketide synthase encoding cluster for the antibacterial formicamycins. Streptomyces formicae KY5 is a new, taxonomically distinct Streptomyces species and this complete genome sequence provides an important marker in the genus of Streptomyces. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.


July 7, 2019  |  

Complete genome sequence of the high-natamycin-producing strain Streptomyces gilvosporeus F607.

Streptomyces gilvosporeus strain F607 is a producer of high levels of natamycin used in the fermentation industry. In this study, the complete genome sequence of strain F607 was determined. This genome sequence provides a basis for understanding natamycin biosynthesis and regulation in a high-natamycin-producing strain and will aid in the development of useful strategies for improving industrial strains.


July 7, 2019  |  

The ‘gifted’ actinomycete Streptomyces leeuwenhoekii.

Streptomyces leeuwenhoekii strains C34T, C38, C58 and C79 were isolated from a soil sample collected from the Chaxa Lagoon, located in the Salar de Atacama in northern Chile. These streptomycetes produce a variety of new specialised metabolites with antibiotic, anti-cancer and anti-inflammatory activities. Moreover, genome mining performed on two of these strains has revealed the presence of biosynthetic gene clusters with the potential to produce new specialised metabolites. This review focusses on this new clade of Streptomyces strains, summarises the literature and presents new information on strain C34T.


July 7, 2019  |  

Draft genome sequence of Streptomyces sp. strain DH-12, a soilborneisolate from the Thar Desert with broad-spectrum antibacterial activity.

Strain DH-12 exhibits broad-spectrum antibacterial activity toward Gram-positive and Gram-negative pathogens. The 7.6-Mb draft genome sequence gives insight into the complete secondary metabolite production capacity and reveals genes putatively responsible for its antibacterial activity, as well as genes which enable the survival of the organism in an extreme arid environment. Copyright © 2018 Jiao et al.


July 7, 2019  |  

Complete genome sequence of Streptomyces sp. strain BSE7F, a Bali mangrove sediment actinobacterium with antimicrobial activities.

The strain Streptomyces sp. BSE7F, a novel Streptomyces strain isolated from Indonesian mangrove sediment, displays antimicrobial activities against Gram-positive bacteria, Gram-negative bacteria, and yeast. Bioinformatic analysis of the genome sequence revealed the occurrence of 22 biosynthetic gene clusters disclosing the secondary metabolite capacity of strain BSE7F. Copyright © 2018 Handayani et al.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.