fbpx
X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Sunday, July 7, 2019

Complete genome sequence of Burkholderia pyrrocinia 2327(T), the first industrial bacterium which produced antifungal antibiotic pyrrolnitrin.

Burkholderia pyrrocinia 2327(T) (=DSM 10685(T), having an origin history as a strain Fujisawa Pharm 2327(T) from Fujisawa Pharmaceutical Co., Ltd.) is the first industrial bacterium for the isolation of antifungal antibiotic pyrrolnitrin. Herein, we present the first complete genome sequence of strain 2327(T), which consists of three circular chromosomes with one plasmid for the total 7,961,346bp sized genome with a GC content of 66.5%. This information will provide better understanding of molecular mechanisms in strain 2327(T), leading the insight of whole-cell system for the practical application of strain with the virtue of antibiotic capacity. Copyright © 2015 Elsevier B.V. All…

Read More »

Sunday, July 7, 2019

Discovery of microbial natural products by activation of silent biosynthetic gene clusters.

Microorganisms produce a wealth of structurally diverse specialized metabolites with a remarkable range of biological activities and a wide variety of applications in medicine and agriculture, such as the treatment of infectious diseases and cancer, and the prevention of crop damage. Genomics has revealed that many microorganisms have far greater potential to produce specialized metabolites than was thought from classic bioactivity screens; however, realizing this potential has been hampered by the fact that many specialized metabolite biosynthetic gene clusters (BGCs) are not expressed in laboratory cultures. In this Review, we discuss the strategies that have been developed in bacteria and…

Read More »

Sunday, July 7, 2019

Draft genome sequence of Streptomyces sp. strain Wb2n-11, a desert isolate with broad-spectrum antagonism against soilborne phytopathogens.

Streptomyces sp. strain Wb2n-11, isolated from native desert soil, exhibited broad-spectrum antagonism against plant pathogenic fungi, bacteria, and nematodes. The 8.2-Mb draft genome reveals genes putatively responsible for its promising biocontrol activity and genes which enable the soil bacterium to directly interact beneficially with plants. Copyright © 2015 Köberl et al.

Read More »

Sunday, July 7, 2019

Whole genome sequence of Pseudomonas aeruginosa F9676, an antagonistic bacterium isolated from rice seed.

Pseudomonas aeruginosa is a group of bacteria, which can be isolated from diverse ecological niches. P. aeruginosa strain F9676 was first isolated from a rice seed sample in 2003. It showed strong antagonism against several plant pathogens. In this study, whole genome sequencing was carried out. The total genome size of F9676 is 6368,008bp with 5586 coding genes (CDS), 67 tRNAs and 3 rRNAs. The genome sequence of F9676 may shed a light on antagonism P. aeruginosa. Copyright © 2015 Elsevier B.V. All rights reserved.

Read More »

Sunday, July 7, 2019

Complete genome sequence of Acinetobacter baumannii strain B8300, which displays high twitching motility.

Acinetobacter baumannii has emerged as an important nosocomial pathogen causing health care-associated infections. In this study, we determined the genome of a twitching-positive clinical strain, B8300, isolated from a hospital in southern India. De novo assembly of PacBio long-read sequencing data generated the B8300 genome that consists of a chromosome of 3.82 Mbp and a plasmid of 25.15 kbp. Copyright © 2015 Vijaykumar et al.

Read More »

Sunday, July 7, 2019

Complete genome sequence of Acinetobacter baumannii strain B8342, a motility-positive clinical isolate.

Acinetobacter baumannii is an emerging Gram-negative pathogen responsible for health care-associated infections. In this study, we determined the genome of a motility-positive clinical strain, B8342, isolated from a hospital in southern India. The B8342 genome, which is 3.94 Mbp, was generated by de novo assembly of PacBio long-read sequencing data. Copyright © 2015 Vijaykumar et al.

Read More »

Sunday, July 7, 2019

Genome sequences of two multidrug-resistant Acinetobacter baumannii clinical strains isolated from Southern India

Acinetobacter baumannii is an emerging nosocomial pathogen causing infections worldwide. In this study, we determined the genome sequences of two multidrug-resistant A. baumannii clinical strains isolated from a hospital in southern India. Genome analyses indicate that both the strains harbor numerous horizontally transferred genetic elements and antibiotic resistance cassettes. Copyright © 2015 Balaji et al.

Read More »

Sunday, July 7, 2019

A novel type pathway-specific regulator and dynamic genome environments of solanapyrone biosynthesis gene cluster in the fungus Ascochyta rabiei.

Secondary metabolite genes are often clustered together and situated in particular genomic regions, like the subtelomere, that can facilitate niche adaptation in fungi. Solanapyrones are toxic secondary metabolites produced by fungi occupying different ecological niches. Full-genome sequencing of the ascomycete Ascochyta rabiei revealed a solanapyrone biosynthesis gene cluster embedded in an AT-rich region proximal to a telomere end and surrounded by Tc1/Mariner-type transposable elements. The highly AT-rich environment of the solanapyrone cluster is likely the product of repeat-induced point mutations. Several secondary metabolism-related genes were found in the flanking regions of the solanapyrone cluster. Although the solanapyrone cluster appears to…

Read More »

Sunday, July 7, 2019

Complete genome sequence of Streptomyces ambofaciens ATCC 23877, the spiramycin producer.

Streptomyces ambofaciens ATCC23877 is a soil bacterium industrially exploited for the production of the macrolide spiramycin which is used in human medicine as an antibacterial and anti-toxoplasmosis chemical. Its genome consists of a 8.3Mbp linear chromosome and a 89kb circular plasmid. The complete genome sequence reported here will enable us to investigate Streptomyces genome evolution and to discover new secondary metabolites with potential applications notably in human medicine. Copyright © 2015 Elsevier B.V. All rights reserved.

Read More »

Sunday, July 7, 2019

The complete genome sequence of a high pristinamycin-producing strain Streptomyces pristinaespiralis HCCB10218.

Streptomyces pristinaespiralis produces the streptogramin-like antibiotic pristinamycin, which is a mixture of two structurally different components: pristinamycin I (PI) and pristinamycin II (PII). Herein, we report the complete genome sequence of a high pristinamycin-producing strain HCCB10218 (8.5Mb) obtained by using PacBio RSII combined with Illumina HiSeq 2500 sequencing system. The genome sequence presented here provides clues for the mechanism underlying the higher pristinamycin production of HCCB10218. Copyright © 2015 Elsevier B.V. All rights reserved.

Read More »

Sunday, July 7, 2019

Genome sequence of a native-feather degrading extremely thermophilic Eubacterium, Fervidobacterium islandicum AW-1.

Fervidobacterium islandicum AW-1 (KCTC 4680) is an extremely thermophilic anaerobe isolated from a hot spring in Indonesia. This bacterium could degrade native chicken feathers completely at 70 °C within 48 h, which is of potential importance on the basis of relevant environmental and agricultural issues in bioremediation and development of eco-friendly bioprocesses for the treatment of native feathers. However, its genomic and phylogenetic analysis remains unclear. Here, we report the high-quality draft genome sequence of an extremely thermophilic anaerobe, F. islandicum AW-1. The genome consists of 2,359,755 bp, which encodes 2,184 protein-coding genes and 64 RNA-encoding genes. This may reveal insights into anaerobic…

Read More »

Sunday, July 7, 2019

High-quality permanent draft genome sequence of the Lebeckia ambigua-nodulating Burkholderia sp. strain WSM4176.

Burkholderia sp. strain WSM4176 is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from an effective N2-fixing root nodule of Lebeckia ambigua collected in Nieuwoudtville, Western Cape of South Africa, in October 2007. This plant persists in infertile, acidic and deep sandy soils, and is therefore an ideal candidate for a perennial based agriculture system in Western Australia. Here we describe the features of Burkholderia sp. strain WSM4176, which represents a potential inoculant quality strain for L. ambigua, together with sequence and annotation. The 9,065,247 bp high-quality-draft genome is arranged in 13 scaffolds of 65 contigs, contains 8369 protein-coding genes…

Read More »

Sunday, July 7, 2019

Identification of the polyketide biosynthetic machinery for the indolizidine alkaloid cyclizidine.

The cyclizidine biosynthetic gene cluster was identified from Streptomyces NCIB 11649, which revealed the polyketide biosynthetic machinery for cyclizidine alkaloid biosynthesis. Both in vivo mutagenesis study and in vitro biochemical analysis provided insight into the timing and mechanism of the biosynthetic enzymes that produce cyclizidine-type indolizidine alkaloids.

Read More »

Sunday, July 7, 2019

Enzymatic degradation of phenazines can generate energy and protect sensitive organisms from toxicity.

Diverse bacteria, including several Pseudomonas species, produce a class of redox-active metabolites called phenazines that impact different cell types in nature and disease. Phenazines can affect microbial communities in both positive and negative ways, where their presence is correlated with decreased species richness and diversity. However, little is known about how the concentration of phenazines is modulated in situ and what this may mean for the fitness of members of the community. Through culturing of phenazine-degrading mycobacteria, genome sequencing, comparative genomics, and molecular analysis, we identified several conserved genes that are important for the degradation of three Pseudomonas-derived phenazines: phenazine-1-carboxylic…

Read More »

1 2 3 4 5 8

Subscribe for blog updates:

Archives

Search

Categories

Press Release

PacBio Grants Equity Incentive Award to New Employee

Friday, November 19, 2021

Stay
Current

Visit our blog »