Menu
September 22, 2019

Identification by high-throughput imaging of the histone methyltransferase EHMT2 as an epigenetic regulator of VEGFA alternative splicing.

Recent evidence points to a role of chromatin in regulation of alternative pre-mRNA splicing (AS). In order to identify novel chromatin regulators of AS, we screened an RNAi library of chromatin proteins using a cell-based high-throughput in vivo assay. We identified a set of chromatin proteins that regulate AS. Using simultaneous genome-wide expression and AS analysis, we demonstrate distinct and non-overlapping functions of these chromatin modifiers on transcription and AS. Detailed mechanistic characterization of one dual function chromatin modifier, the H3K9 methyltransferase EHMT2 (G9a), identified VEGFA as a major chromatin-mediated AS target. Silencing of EHMT2, or its heterodimer partner EHMT1, affects AS by promoting exclusion of VEGFA exon 6a, but does not alter total VEGFA mRNA levels. The epigenetic regulatory mechanism of AS by EHMT2 involves an adaptor system consisting of the chromatin modulator HP1?, which binds methylated H3K9 and recruits splicing regulator SRSF1. The epigenetic regulation of VEGFA is physiologically relevant since EHMT2 is transcriptionally induced in response to hypoxia and triggers concomitant changes in AS of VEGFA. These results characterize a novel epigenetic regulatory mechanism of AS and they demonstrate separate roles of epigenetic modifiers in transcription and alternative splicing. Published by Oxford University Press on behalf of Nucleic Acids Research 2014. This work is written by US Government employees and is in the public domain in the US.


September 22, 2019

Fusion of TTYH1 with the C19MC microRNA cluster drives expression of a brain-specific DNMT3B isoform in the embryonal brain tumor ETMR.

Embryonal tumors with multilayered rosettes (ETMRs) are rare, deadly pediatric brain tumors characterized by high-level amplification of the microRNA cluster C19MC. We performed integrated genetic and epigenetic analyses of 12 ETMR samples and identified, in all cases, C19MC fusions to TTYH1 driving expression of the microRNAs. ETMR tumors, cell lines and xenografts showed a specific DNA methylation pattern distinct from those of other tumors and normal tissues. We detected extreme overexpression of a previously uncharacterized isoform of DNMT3B originating at an alternative promoter that is active only in the first weeks of neural tube development. Transcriptional and immunohistochemical analyses suggest that C19MC-dependent DNMT3B deregulation is mediated by RBL2, a known repressor of DNMT3B. Transfection with individual C19MC microRNAs resulted in DNMT3B upregulation and RBL2 downregulation in cultured cells. Our data suggest a potential oncogenic re-engagement of an early developmental program in ETMR via epigenetic alteration mediated by an embryonic, brain-specific DNMT3B isoform.


September 22, 2019

How far can mitochondrial DNA drive the disease?

Mitochondria are one of the dominant drivers for producing cellular energy to meet a large number of biological functions, of which the mitochondrial DNA (mtDNA) is the control center of energetic driving force and the dominant driver of mitochondrial molecular diversification. mtDNA transcription generates the necessary RNAs to regulate the extent and nature of mtRNA post-transcriptional modifications and the activity of nucleus-encoded enzymes. With a special focus on mtDNA, the current volume aims to overview the biology and structures of mtDNA, regulatory roles of mtDNA in lung diseases, or involvement of mtDNA in metabolism. We explore the significance of mtDNA sequencing, methylation, stability, and mutation in the pathogenesis of the diseases. Molecular mechanisms by which mtDNA contribute to the regulation of mitochondrial homeostasis and drug resistance are also discussed. We also point out the importance of mitochondrial ribosome, single cell biology, and gene editing in the understanding of the development of mitochondrial dysfunction in lung disease.


September 22, 2019

HIV-1 interacts with human endogenous retrovirus K (HML-2) envelopes derived from human primary lymphocytes.

Human endogenous retroviruses (HERVs) are viruses that have colonized the germ line and spread through vertical passage. Only the more recently acquired HERVs, such as the HERV-K (HML-2) group, maintain coding open reading frames. Expression of HERV-Ks has been linked to different pathological conditions, including HIV infection, but our knowledge on which specific HERV-Ks are expressed in primary lymphocytes currently is very limited. To identify the most expressed HERV-Ks in an unbiased manner, we analyzed their expression patterns in peripheral blood lymphocytes using Pacific Biosciences (PacBio) single-molecule real-time (SMRT) sequencing. We observe that three HERV-Ks (KII, K102, and K18) constitute over 90% of the total HERV-K expression in primary human lymphocytes of five different donors. We also show experimentally that two of these HERV-K env sequences (K18 and K102) retain their ability to produce full-length and posttranslationally processed envelope proteins in cell culture. We show that HERV-K18 Env can be incorporated into HIV-1 but not simian immunodeficiency virus (SIV) particles. Moreover, HERV-K18 Env incorporation into HIV-1 virions is dependent on HIV-1 matrix. Taken together, we generated high-resolution HERV-K expression profiles specific for activated human lymphocytes. We found that one of the most abundantly expressed HERV-K envelopes not only makes a full-length protein but also specifically interacts with HIV-1. Our findings raise the possibility that these endogenous retroviral Env proteins could directly influence HIV-1 replication.Here, we report the HERV-K expression profile of primary lymphocytes from 5 different healthy donors. We used a novel deep-sequencing technology (PacBio SMRT) that produces the long reads necessary to discriminate the complexity of HERV-K expression. We find that primary lymphocytes express up to 32 different HERV-K envelopes, and that at least two of the most expressed Env proteins retain their ability to make a protein. Importantly, one of them, the envelope glycoprotein of HERV-K18, is incorporated into HIV-1 in an HIV matrix-specific fashion. The ramifications of such interactions are discussed, as the possibility of HIV-1 target tissue broadening and immune evasion are considered.


September 22, 2019

Ecological genomics of tropical trees: how local population size and allelic diversity of resistance genes relate to immune responses, cosusceptibility to pathogens, and negative density dependence

In tropical forests, rarer species show increased sensitivity to species-specific soil pathogens and more negative effects of conspecific density on seedling survival (NDD). These patterns suggest a connection between ecology and immunity, perhaps because small population size disproportionately reduces genetic diversity of hyperdiverse loci such as immunity genes. In an experiment examining seedling roots from six species in one tropical tree community, we found that smaller populations have reduced amino acid diversity in pathogen resistance (R) genes but not the transcriptome in general. Normalized R gene amino acid diversity varied with local abundance and prior measures of differences in sensitivity to conspecific soil and NDD. After exposure to live soil, species with lower R gene diversity had reduced defence gene induction, more cosusceptibility of maternal cohorts to colonization by potentially pathogenic fungi, reduced root growth arrest (an R gene-mediated response) and their root-associated fungi showed lower induction of self-defence (antioxidants). Local abundance was not related to the ability to induce immune responses when pathogen recognition was bypassed by application of salicylic acid, a phytohormone that activates defence responses downstream of R gene signalling. These initial results support the hypothesis that smaller local tree populations have reduced R gene diversity and recognition-dependent immune responses, along with greater cosusceptibility to species-specific pathogens that may facilitate disease transmission and NDD. Locally rare species may be less able to increase their equilibrium abundance without genetic boosts to defence via immigration of novel R gene alleles from a larger and more diverse regional population.


September 22, 2019

Single-cell mRNA isoform diversity in the mouse brain.

Alternative mRNA isoform usage is an important source of protein diversity in mammalian cells. This phenomenon has been extensively studied in bulk tissues, however, it remains unclear how this diversity is reflected in single cells.Here we use long-read sequencing technology combined with unique molecular identifiers (UMIs) to reveal patterns of alternative full-length isoform expression in single cells from the mouse brain. We found a surprising amount of isoform diversity, even after applying a conservative definition of what constitutes an isoform. Genes tend to have one or a few isoforms highly expressed and a larger number of isoforms expressed at a low level. However, for many genes, nearly every sequenced mRNA molecule was unique, and many events affected coding regions suggesting previously unknown protein diversity in single cells. Exon junctions in coding regions were less prone to splicing errors than those in non-coding regions, indicating purifying selection on splice donor and acceptor efficiency.Our findings indicate that mRNA isoform diversity is an important source of biological variability also in single cells.


September 22, 2019

Genome re-annotation of the wild strawberry Fragaria vesca using extensive Illumina-and SMRT-based RNA-seq datasets

The genome of the wild diploid strawberry species Fragaria vesca, an ideal model system of cultivated strawberry (Fragaria × ananassa, octoploid) and other Rosaceae family crops, was first published in 2011 and followed by a new assembly (Fvb). However, the annotation for Fvb mainly relied on ab initio predictions and included only predicted coding sequences, therefore an improved annotation is highly desirable. Here, a new annotation version named v2.0.a2 was created for the Fvb genome by a pipeline utilizing one PacBio library, 90 Illumina RNA-seq libraries, and 9 small RNA-seq libraries. Altogether, 18,641 genes (55.6% out of 33,538 genes) were augmented with information on the 5′ and/or 3′ UTRs, 13,168 (39.3%) protein-coding genes were modified or newly identified, and 7,370 genes were found to possess alternative isoforms. In addition, 1,938 long non-coding RNAs, 171 miRNAs, and 51,714 small RNA clusters were integrated into the annotation. This new annotation of F. vesca is substantially improved in both accuracy and integrity of gene predictions, beneficial to the gene functional studies in strawberry and to the comparative genomic analysis of other horticultural crops in Rosaceae family.


September 22, 2019

Universal alternative splicing of noncoding exons.

The human transcriptome is so large, diverse, and dynamic that, even after a decade of investigation by RNA sequencing (RNA-seq), we have yet to resolve its true dimensions. RNA-seq suffers from an expression-dependent bias that impedes characterization of low-abundance transcripts. We performed targeted single-molecule and short-read RNA-seq to survey the transcriptional landscape of a single human chromosome (Hsa21) at unprecedented resolution. Our analysis reaches the lower limits of the transcriptome, identifying a fundamental distinction between protein-coding and noncoding gene content: almost every noncoding exon undergoes alternative splicing, producing a seemingly limitless variety of isoforms. Analysis of syntenic regions of the mouse genome shows that few noncoding exons are shared between human and mouse, yet human splicing profiles are recapitulated on Hsa21 in mouse cells, indicative of regulation by a deeply conserved splicing code. We propose that noncoding exons are functionally modular, with alternative splicing generating an enormous repertoire of potential regulatory RNAs and a rich transcriptional reservoir for gene evolution. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.


September 22, 2019

Transcriptome analysis of distinct cold tolerance strategies in the rubber tree (Hevea brasiliensis)

Natural rubber is an indispensable commodity used in approximately 40,000 products and is fundamental to the tire industry. Among the species that produce latex, the rubber tree [Hevea brasiliensis (Willd. ex Adr. de Juss.) Muell-Arg.], a species native to the Amazon rainforest, is the major producer of latex used worldwide. The Amazon Basin presents optimal conditions for rubber tree growth, but the occurrence of South American leaf blight, which is caused by the fungus Microcyclus ulei (P. Henn) v. Arx, limits rubber tree production. Currently, rubber tree plantations are located in scape regions that exhibit suboptimal conditions such as high winds and cold temperatures. Rubber tree breeding programs aim to identify clones that are adapted to these stress conditions. However, rubber tree breeding is time-consuming, taking more than 20 years to develop a new variety. It is also expensive and requires large field areas. Thus, genetic studies could optimize field evaluations, thereby reducing the time and area required for these experiments. Transcriptome sequencing using next-generation sequencing (RNA-seq) is a powerful tool to identify a full set of transcripts and for evaluating gene expression in model and non-model species. In this study, we constructed a comprehensive transcriptome to evaluate the cold response strategies of the RRIM600 (cold-resistant) and GT1 (cold-tolerant) genotypes. Furthermore, we identified putative microsatellite (SSR) and single-nucleotide polymorphism (SNP) markers. Alternative splicing, which is an important mechanism for plant adaptation under abiotic stress, was further identified, providing an important database for further studies of cold tolerance.


September 22, 2019

Clonal distribution of BCR-ABL1 mutations and splice isoforms by single-molecule long-read RNA sequencing.

The evolution of mutations in the BCR-ABL1 fusion gene transcript renders CML patients resistant to tyrosine kinase inhibitor (TKI) based therapy. Thus screening for BCR-ABL1 mutations is recommended particularly in patients experiencing poor response to treatment. Herein we describe a novel approach for the detection and surveillance of BCR-ABL1 mutations in CML patients.To detect mutations in the BCR-ABL1 transcript we developed an assay based on the Pacific Biosciences (PacBio) sequencing technology, which allows for single-molecule long-read sequencing of BCR-ABL1 fusion transcript molecules. Samples from six patients with poor response to therapy were analyzed both at diagnosis and follow-up. cDNA was generated from total RNA and a 1,6 kb fragment encompassing the BCR-ABL1 transcript was amplified using long range PCR. To estimate the sensitivity of the assay, a serial dilution experiment was performed.Over 10,000 full-length BCR-ABL1 sequences were obtained for all samples studied. Through the serial dilution analysis, mutations in CML patient samples could be detected down to a level of at least 1%. Notably, the assay was determined to be sufficiently sensitive even in patients harboring a low abundance of BCR-ABL1 levels. The PacBio sequencing successfully identified all mutations seen by standard methods. Importantly, we identified several mutations that escaped detection by the clinical routine analysis. Resistance mutations were found in all but one of the patients. Due to the long reads afforded by PacBio sequencing, compound mutations present in the same molecule were readily distinguished from independent alterations arising in different molecules. Moreover, several transcript isoforms of the BCR-ABL1 transcript were identified in two of the CML patients. Finally, our assay allowed for a quick turn around time allowing samples to be reported upon within 2 days.In summary the PacBio sequencing assay can be applied to detect BCR-ABL1 resistance mutations in both diagnostic and follow-up CML patient samples using a simple protocol applicable to routine diagnosis. The method besides its sensitivity, gives a complete view of the clonal distribution of mutations, which is of importance when making therapy decisions.


September 22, 2019

Major histocompatibility complex haplotyping and long-amplicon allele discovery in cynomolgus macaques from Chinese breeding facilities.

Very little is currently known about the major histocompatibility complex (MHC) region of cynomolgus macaques (Macaca fascicularis; Mafa) from Chinese breeding centers. We performed comprehensive MHC class I haplotype analysis of 100 cynomolgus macaques from two different centers, with animals from different reported original geographic origins (Vietnamese, Cambodian, and Cambodian/Indonesian mixed-origin). Many of the samples were of known relation to each other (sire, dam, and progeny sets), making it possible to characterize lineage-level haplotypes in these animals. We identified 52 Mafa-A and 74 Mafa-B haplotypes in this cohort, many of which were restricted to specific sample origins. We also characterized full-length MHC class I transcripts using Pacific Biosciences (PacBio) RS II single-molecule real-time (SMRT) sequencing. This technology allows for complete read-through of unfragmented MHC class I transcripts (~1100 bp in length), so no assembly is required to unambiguously resolve novel full-length sequences. Overall, we identified 311 total full-length transcripts in a subset of 72 cynomolgus macaques from these Chinese breeding facilities; 130 of these sequences were novel and an additional 115 extended existing short database sequences to span the complete open reading frame. This significantly expands the number of Mafa-A, Mafa-B, and Mafa-I full-length alleles in the official cynomolgus macaque MHC class I database. The PacBio technique described here represents a general method for full-length allele discovery and genotyping that can be extended to other complex immune loci such as MHC class II, killer immunoglobulin-like receptors, and Fc gamma receptors.


September 22, 2019

The first whole transcriptomic exploration of pre-oviposited early chicken embryos using single and bulked embryonic RNA-sequencing.

The chicken is a valuable model organism, especially in evolutionary and embryology research because its embryonic development occurs in the egg. However, despite its scientific importance, no transcriptome data have been generated for deciphering the early developmental stages of the chicken because of practical and technical constraints in accessing pre-oviposited embryos.Here, we determine the entire transcriptome of pre-oviposited avian embryos, including oocyte, zygote, and intrauterine embryos from Eyal-giladi and Kochav stage I (EGK.I) to EGK.X collected using a noninvasive approach for the first time. We also compare RNA-sequencing data obtained using a bulked embryo sequencing and single embryo/cell sequencing technique. The raw sequencing data were preprocessed with two genome builds, Galgal4 and Galgal5, and the expression of 17,108 and 26,102 genes was quantified in the respective builds. There were some differences between the two techniques, as well as between the two genome builds, and these were affected by the emergence of long intergenic noncoding RNA annotations.The first transcriptome datasets of pre-oviposited early chicken embryos based on bulked and single embryo sequencing techniques will serve as a valuable resource for investigating early avian embryogenesis, for comparative studies among vertebrates, and for novel gene annotation in the chicken genome.


September 22, 2019

Circular RNA architecture and differentiation during leaf bud to young leaf development in tea (Camellia sinensis).

Circular RNA (circRNA) discovery, expression patterns and experimental validation in developing tea leaves indicates its correlation with circRNA-parental genes and potential roles in ceRNA interaction network. Circular RNAs (circRNAs) have recently emerged as a novel class of abundant endogenous stable RNAs produced by circularization with regulatory potential. However, identification of circRNAs in plants, especially in non-model plants with large genomes, is challenging. In this study, we undertook a systematic identification of circRNAs from different stage tissues of tea plant (Camellia sinensis) leaf development using rRNA-depleted circular RNA-seq. By combining two state-of-the-art detecting tools, we characterized 3174 circRNAs, of which 342 were shared by each approach, and thus considered high-confidence circRNAs. A few predicted circRNAs were randomly chosen, and 20 out of 24 were experimental confirmed by PCR and Sanger sequencing. Similar in other plants, tissue-specific expression was also observed for many C. sinensis circRNAs. In addition, we found that circRNA abundances were positively correlated with the mRNA transcript abundances of their parental genes. qRT-PCR validated the differential expression patterns of circRNAs between leaf bud and young leaf, which also indicated the low expression abundance of circRNAs compared to the standard mRNAs from the parental genes. We predicted the circRNA-microRNA interaction networks, and 54 of the differentially expressed circRNAs were found to have potential tea plant miRNA binding sites. The gene sets encoding circRNAs were significantly enriched in chloroplasts related GO terms and photosynthesis/metabolites biosynthesis related KEGG pathways, suggesting the candidate roles of circRNAs in photosynthetic machinery and metabolites biosynthesis during leaf development.


September 22, 2019

First insights into the nature and evolution of antisense transcription in nematodes.

The development of multicellular organisms is coordinated by various gene regulatory mechanisms that ensure correct spatio-temporal patterns of gene expression. Recently, the role of antisense transcription in gene regulation has moved into focus of research. To characterize genome-wide patterns of antisense transcription and to study their evolutionary conservation, we sequenced a strand-specific RNA-seq library of the nematode Pristionchus pacificus.We identified 1112 antisense configurations of which the largest group represents 465 antisense transcripts (ASTs) that are fully embedded in introns of their host genes. We find that most ASTs show homology to protein-coding genes and are overrepresented in proteomic data. Together with the finding, that expression levels of ASTs and host genes are uncorrelated, this indicates that most ASTs in P. pacificus do not represent non-coding RNAs and do not exhibit regulatory functions on their host genes. We studied the evolution of antisense gene pairs across 20 nematode genomes, showing that the majority of pairs is lineage-specific and even the highly conserved vps-4, ddx-27, and sel-2 loci show abundant structural changes including duplications, deletions, intron gains and loss of antisense transcription. In contrast, host genes in general, are remarkably conserved and encode exceptionally long introns leading to unusually large blocks of conserved synteny.Our study has shown that in P. pacificus antisense transcription as such does not define non-coding RNAs but is rather a feature of highly conserved genes with long introns. We hypothesize that the presence of regulatory elements imposes evolutionary constraint on the intron length, but simultaneously, their large size makes them a likely target for translocation of genomic elements including protein-coding genes that eventually end up as ASTs.


September 22, 2019

Transcriptome comparative analysis of salt stress responsiveness in chrysanthemum (Dendranthema grandiflorum) roots by Illumina- and Single-Molecule Real-Time-based RNA sequencing.

Salt response has long been considered a polygenic-controlled character in plants. Under salt stress conditions, plants respond by activating a great amount of proteins and enzymes. To develop a better understanding of the molecular mechanism and screen salt responsive genes in chrysanthemum under salt stress, we performed the RNA sequencing (RNA-seq) on both salt-processed chrysanthemum seedling roots and the control group, and gathered six cDNA databases eventually. Moreover, to overcome the Illumina HiSeq technology’s limitation on sufficient length of reads and improve the quality and accuracy of the result, we combined Illumina HiSeq with single-molecule real-time sequencing (SMRT-seq) to decode the full-length transcripts. As a result, we successfully collected 550,823 unigenes, and from which we selected 48,396 differentially expressed genes (DEGs). Many of these DEGs were associated with the signal transduction, biofilm system, antioxidant system, and osmotic regulation system, such as mitogen-activated protein kinase (MAPK), Acyl-CoA thioesterase (ACOT), superoxide (SOD), catalase (CAT), peroxisomal membrane protein (PMP), and pyrroline-5-carboxylate reductase (P5CR). The quantitative real-time polymerase chain reaction (qRT-PCR) analysis of 15 unigenes was performed to test the data validity. The results were highly consistent with the RNA-seq results. In all, these findings could facilitate further detection of the responsive molecular mechanism under salt stress. They also provided more accurate candidate genes for genetic engineering on salt-tolerant chrysanthemums.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.