Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.


Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.


You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
September 1, 2014

The Santa Pola saltern as a model for studying the microbiota of hypersaline environments.

Multi-pond salterns constitute an excellent model for the study of the microbial diversity and ecology of hypersaline environments, showing a wide range of salt concentrations, from seawater to salt saturation. Accumulated studies on the Santa Pola (Alicante, Spain) multi-pond solar saltern during the last 35 years include culture-dependent and culture-independent molecular methods and metagenomics more recently. These approaches have permitted to determine in depth the microbial diversity of the ponds with intermediate salinities (from 10 % salts) up to salt saturation, with haloarchaea and bacteria as the two main dominant groups. In this review, we describe the main results obtained using the…

Read More »

July 1, 2014

The characterization of goat genetic diversity: Towards a genomic approach

The investigation of genetic diversity at molecular level has been proposed as a valuable complement and sometimes proxy to phenotypic diversity of local breeds and is presently considered as one of the FAO priorities for breed characterization. By recommending a set of selected molecular markers for each of the main livestock species, FAO has promoted the meta-analysis of local datasets, to achieve a global view of molecular genetic diversity. Analysis within the EU Globaldiv project of two large goat microsatellite datasets produced by the Econogene Consortium and the IAEA CRP–Asia Consortium, respectively, has generated a picture of goat diversity across…

Read More »

May 1, 2014

Exploring bacterial epigenomics in the next-generation sequencing era: a new approach for an emerging frontier.

Epigenetics has an important role for the success of foodborne pathogen persistence in diverse host niches. Substantial challenges exist in determining DNA methylation to situation-specific phenotypic traits. DNA modification, mediated by restriction-modification systems, functions as an immune response against antagonistic external DNA, and bacteriophage-acquired methyltransferases (MTase) and orphan MTases - those lacking the cognate restriction endonuclease - facilitate evolution of new phenotypes via gene expression modulation via DNA and RNA modifications, including methylation and phosphorothioation. Recent establishment of large-scale genome sequencing projects will result in a significant increase in genome availability that will lead to new demands for data analysis…

Read More »

March 1, 2014

Technology: SMRT move?

One of the major challenges of de novo mammalian genome assembly arises from the presence of large, interspersed segmental duplications with high levels of sequence identity. These regions are particularly difficult to assemble using current short-read high-throughput sequencing methods. Combining long-read single-molecule, real-time (SMRT) sequencing with a hierarchical genome-assembly process (HGAP), as well as the consensus and variant caller Quiver, enabled these complex genomic regions to be resolved in a more cost-and time-effective manner than previously possible.

Read More »

February 1, 2014

The challenges and importance of structural variation detection in livestock.

Recent studies in humans and other model organisms have demonstrated that structural variants (SVs) comprise a substantial proportion of variation among individuals of each species. Many of these variants have been linked to debilitating diseases in humans, thereby cementing the importance of refining methods for their detection. Despite progress in the field, reliable detection of SVs still remains a problem even for human subjects. Many of the underlying problems that make SVs difficult to detect in humans are amplified in livestock species, whose lower quality genome assemblies and incomplete gene annotation can often give rise to false positive SV discoveries.…

Read More »

December 1, 2013

Bacteriophage orphan DNA methyltransferases: insights from their bacterial origin, function, and occurrence.

Type II DNA methyltransferases (MTases) are enzymes found ubiquitously in the prokaryotic world, where they play important roles in several cellular processes, such as host protection and epigenetic regulation. Three classes of type II MTases have been identified thus far in bacteria which function in transferring a methyl group from S-adenosyl-l-methionine (SAM) to a target nucleotide base, forming N-6-methyladenine (class I), N-4-methylcytosine (class II), or C-5-methylcytosine (class III). Often, these MTases are associated with a cognate restriction endonuclease (REase) to form a restriction-modification (R-M) system protecting bacterial cells from invasion by foreign DNA. When MTases exist alone, which are then…

Read More »

October 1, 2013

In transition: primate genomics at a time of rapid change.

The field of nonhuman primate genomics is undergoing rapid change and making impressive progress. Exploiting new technologies for DNA sequencing, researchers have generated new whole-genome sequence assemblies for multiple primate species over the past 6 years. In addition, investigations of within-species genetic variation, gene expression and RNA sequences, conservation of non-protein-coding regions of the genome, and other aspects of comparative genomics are moving at an accelerating speed. This progress is opening a wide array of new research opportunities in the analysis of comparative primate genome content and evolution. It also creates new possibilities for the use of nonhuman primates as…

Read More »

August 1, 2013

The first 50 plant genomes

Fifty-five plant genomes have been published to date representing 49 different species (Table 1 includes PubMed IDs for complete reference). What have we learned from the first wave of plant genomes? It has been said that plant genome papers (and genome papers in general) are dry and lack “biology” and that the days of high impact plant genome papers are drawing to a close unless they explore significant biology. However, with each new genome, earlier observations are refined and plant genome papers continue to reveal novel aspects of genome biology. For example, the tomato and banana genome papers refined current…

Read More »

April 16, 2013

Entering the era of bacterial epigenomics with single molecule real time DNA sequencing.

DNA modifications, such as methylation guide numerous critical biological processes, yet epigenetic information has not routinely been collected as part of DNA sequence analyses. Recently, the development of single molecule real time (SMRT) DNA sequencing has enabled detection of modified nucleotides (e.g. 6mA, 4mC, 5mC) in parallel with acquisition of primary sequence data, based on analysis of the kinetics of DNA synthesis reactions. In bacteria, genome-wide mapping of methylated and unmethylated loci is now feasible. This technological advance sets the stage for comprehensive, mechanistic assessment of the effects of bacterial DNA methyltransferases (MTases)-which are ubiquitous, extremely diverse, and largely uncharacterized-on…

Read More »

April 1, 2013

Feasibility of real time next generation sequencing of cancer genes linked to drug response: results from a clinical trial.

The successes of targeted drugs with companion predictive biomarkers and the technological advances in gene sequencing have generated enthusiasm for evaluating personalized cancer medicine strategies using genomic profiling. We assessed the feasibility of incorporating real-time analysis of somatic mutations within exons of 19 genes into patient management. Blood, tumor biopsy and archived tumor samples were collected from 50 patients recruited from four cancer centers. Samples were analyzed using three technologies: targeted exon sequencing using Pacific Biosciences PacBio RS, multiplex somatic mutation genotyping using Sequenom MassARRAY and Sanger sequencing. An expert panel reviewed results prior to reporting to clinicians. A clinical…

Read More »

June 1, 2012

Next-generation sequencing and large genome assemblies.

The next-generation sequencing (NGS) revolution has drastically reduced time and cost requirements for sequencing of large genomes, and also qualitatively changed the problem of assembly. This article reviews the state of the art in de novo genome assembly, paying particular attention to mammalian-sized genomes. The strengths and weaknesses of the main sequencing platforms are highlighted, leading to a discussion of assembly and the new challenges associated with NGS data. Current approaches to assembly are outlined and the various software packages available are introduced and compared. The question of whether quality assemblies can be produced using short-read NGS data alone, or…

Read More »

June 1, 2012

Going beyond five bases in DNA sequencing.

DNA sequencing has provided a wealth of information about biological systems, but thus far has focused on the four canonical bases, and 5-methylcytosine through comparison of the genomic DNA sequence to a transformed four-base sequence obtained after treatment with bisulfite. However, numerous other chemical modifications to the nucleotides are known to control fundamental life functions, influence virulence of pathogens, and are associated with many diseases. These modifications cannot be accessed with traditional sequencing methods. In this opinion, we highlight several emerging single-molecule sequencing techniques that have the potential to directly detect many types of DNA modifications as an integral part…

Read More »

February 1, 2012

Cancer genomics: technology, discovery, and translation.

In recent years, the increasing awareness that somatic mutations and other genetic aberrations drive human malignancies has led us within reach of personalized cancer medicine (PCM). The implementation of PCM is based on the following premises: genetic aberrations exist in human malignancies; a subset of these aberrations drive oncogenesis and tumor biology; these aberrations are actionable (defined as having the potential to affect management recommendations based on diagnostic, prognostic, and/or predictive implications); and there are highly specific anticancer agents available that effectively modulate these targets. This article highlights the technology underlying cancer genomics and examines the early results of genome…

Read More »

September 1, 2011

Real-time sequencing.

This month’s Genome Watch describes the impact of next-generation sequencing on the ‘real-time’ analysis of pathogen genomes during outbreaks.

Read More »

1 21 22 23 24

Subscribe for blog updates: