X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Sunday, July 7, 2019

A comprehensive model of DNA fragmentation for the preservation of High Molecular Weight DNA

During DNA extraction the DNA molecule undergoes physical and chemical shearing, causing the DNA to fragment into shorter and shorter pieces. Under common laboratory conditions this fragmentation yields DNA fragments of 5-35 kilobases (kb) in length. This fragment length is more than sufficient for DNA sequencing using short-read technologies which generate reads 50-600 bp in length, but insufficient for long-read sequencing and linked reads where fragment lengths of more than 40 kb may be desirable. This study provides a theoretical framework for quality management to ensure access to high molecular weight DNA in samples. Shearing can be divided into physical…

Read More »

Sunday, July 7, 2019

An empirical evaluation of error correction methods and tools for next generation sequencing data

esearch. However, data produced by NGS is affected by different errors such as substitutions, deletions or insertion. It is essential to differentiate between true biological variants and alterations occurred due to errors for accurate downstream analysis. Many types of methods and tools have been developed for NGS error correction. Some of these methods only correct substitutions errors whereas others correct multi types of data errors. In this article, a comprehensive evaluation of three types of methods (k-spectrum based, Multi- sequencing alignment and Hybrid based) is presented which are implemented and adopted by different tools. Experiments have been conducted to compare…

Read More »

Sunday, July 7, 2019

Ten steps to get started in Genome Assembly and Annotation.

As a part of the ELIXIR-EXCELERATE efforts in capacity building, we present here 10 steps to facilitate researchers getting started in genome assembly and genome annotation. The guidelines given are broadly applicable, intended to be stable over time, and cover all aspects from start to finish of a general assembly and annotation project. Intrinsic properties of genomes are discussed, as is the importance of using high quality DNA. Different sequencing technologies and generally applicable workflows for genome assembly are also detailed. We cover structural and functional annotation and encourage readers to also annotate transposable elements, something that is often omitted…

Read More »

Sunday, July 7, 2019

Oryza rufipogon Griff.

Oryza rufipogon, the progenitor of present-day cultivated rice, O. sativa, is one of the most studied wild species of rice. It is a perennial plant commonly found in a marsh or aquatic habitats of eastern and southern Asia. It has partial outcrossing behavior and is photoperiod sensitive. The flowering time usually ranges between September and November. It has been and is being exploited as a source of valuable genes and QTLs for yield components as well as resistance against biotic and abiotic stresses. A number of populations like chromosome segment substitution lines, backcross inbred lines, near-isogenic lines, and recombinant inbred…

Read More »

Sunday, July 7, 2019

The ‘gifted’ actinomycete Streptomyces leeuwenhoekii.

Streptomyces leeuwenhoekii strains C34T, C38, C58 and C79 were isolated from a soil sample collected from the Chaxa Lagoon, located in the Salar de Atacama in northern Chile. These streptomycetes produce a variety of new specialised metabolites with antibiotic, anti-cancer and anti-inflammatory activities. Moreover, genome mining performed on two of these strains has revealed the presence of biosynthetic gene clusters with the potential to produce new specialised metabolites. This review focusses on this new clade of Streptomyces strains, summarises the literature and presents new information on strain C34T.

Read More »

Sunday, July 7, 2019

Natural rubber and the Russian dandelion genome

The world needs rubber. Rubber is crucial for the tires on the cars, trucks and airplanes that propel modern transportation. It is equally important for daily tasks: latex gloves in the lab, balloons in angioplasty and wetsuits that warm a cold dip in the ocean. Rubber can be made synthetically from petroleum derivatives, but synthetic rubber is not as strong as rubber iso- lated from plants. The principal plant source for natural rubber (NR) is the sap of the Par´ a tree (Hevea brasiliensis), which is grown throughout Southeast Asia. Unfortunately, the produc- tion capacity of the Par´ a tree…

Read More »

Sunday, July 7, 2019

Rooting for new sources of natural rubber

Global production of natural rubber (NR) depends overwhelmingly on the Pará rubber tree (Hevea brasiliensis), a slow-growing tropical tree that is threatened by low genetic diversity and high susceptibility to fungal blight [1]. Alternative rubber sources have been sought for more than a century, but very few species have been found that produce rubber of comparable quality [2]. One of the brightest candidates, first noticed by breeders in Soviet-era Russia, is Taraxacum kok-saghyz (commonly called TKS). This close relative of the common weedy dandelion has a number of attractive features. As a native of central Asia, TKS can be cultivated…

Read More »

Sunday, July 7, 2019

Synthetic biology, genome mining, and combinatorial biosynthesis of NRPS-derived antibiotics: a perspective.

Combinatorial biosynthesis of novel secondary metabolites derived from nonribosomal peptide synthetases (NRPSs) has been in slow development for about a quarter of a century. Progress has been hampered by the complexity of the giant multimodular multienzymes. More recently, advances have been made on understanding the chemical and structural biology of these complex megaenzymes, and on learning the design rules for engineering functional hybrid enzymes. In this perspective, I address what has been learned about successful engineering of complex lipopeptides related to daptomycin, and discuss how synthetic biology and microbial genome mining can converge to broaden the scope and enhance the…

Read More »

Sunday, July 7, 2019

Sustaining global agriculture through rapid detection and deployment of genetic resistance to deadly crop diseases.

Contents Summary 45 I. Introduction 45 II. Targeted chromosome-based cloning via long-range assembly (TACCA) 46 III. Resistance gene cloning through mutational mapping (MutMap) 47 IV. Cloning through mutant chromosome sequencing (MutChromSeq) 47 V. Rapid cloning through resistance gene enrichment and sequencing (RenSeq) 49 VI. Cloning resistance genes through transcriptome profiling (RNAseq) 49 VII. Resistance gene deployment strategies 49 VIII. Conclusions 50 Acknowledgements 50 References 50 SUMMARY: Genetically encoded resistance is a major component of crop disease management. Historically, gene loci conferring resistance to pathogens have been identified through classical genetic methods. In recent years, accelerated gene cloning strategies have become…

Read More »

Sunday, July 7, 2019

Satellite DNA evolution: old ideas, new approaches.

A substantial portion of the genomes of most multicellular eukaryotes consists of large arrays of tandemly repeated sequence, collectively called satellite DNA. The processes generating and maintaining different satellite DNA abundances across lineages are important to understand as satellites have been linked to chromosome mis-segregation, disease phenotypes, and reproductive isolation between species. While much theory has been developed to describe satellite evolution, empirical tests of these models have fallen short because of the challenges in assessing satellite repeat regions of the genome. Advances in computational tools and sequencing technologies now enable identification and quantification of satellite sequences genome-wide. Here, we…

Read More »

Sunday, July 7, 2019

To B or not to B: a tale of unorthodox chromosomes.

Highlights • B chromosomes are dispensable parts of the karyotype of many eukaryotes. • Deemed genome parasites in plants and animals, provide advantage to pathogenic fungi. • Often enriched in repeats and in fast evolving pathogenicity-related genes. • B chromosomes are not a uniform class, share certain features with core chromosomes.

Read More »

Sunday, July 7, 2019

The sequenced angiosperm genomes and genome databases.

Angiosperms, the flowering plants, provide the essential resources for human life, such as food, energy, oxygen, and materials. They also promoted the evolution of human, animals, and the planet earth. Despite the numerous advances in genome reports or sequencing technologies, no review covers all the released angiosperm genomes and the genome databases for data sharing. Based on the rapid advances and innovations in the database reconstruction in the last few years, here we provide a comprehensive review for three major types of angiosperm genome databases, including databases for a single species, for a specific angiosperm clade, and for multiple angiosperm…

Read More »

Sunday, July 7, 2019

Phylogeny of dermatophytes with genomic character evaluation of clinically distinct Trichophyton rubrum and T. áviolaceum

Trichophyton rubrum and T. violaceum are prevalent agents of human dermatophyte infections, the former being found on glabrous skin and nail, while the latter is confined to the scalp. The two species are phenotypically different but are highly similar phylogenetically. The taxonomy of dermatophytes is currently being reconsidered on the basis of molecular phylogeny. Molecular species definitions do not always coincide with existing concepts which are guided by ecological and clinical principles. In this article, we aim to bring phylogenetic and ecological data together in an attempt to develop new species concepts for anthropophilic dermatophytes. Focus is on the T.…

Read More »

Sunday, July 7, 2019

The case for not masking away repetitive DNA

In the course of analyzing whole-genome data, it is common practice to mask or filter out repetitive regions of a genome, such as transposable elements and endogenous retroviruses, in order to focus only on genes and thus simplify the results. This Commentary is a plea from one member of the Mobile DNA community to all gene-centric researchers: please do not ignore the repetitive fraction of the genome. Please stop narrowing your findings by only analyzing a minority of the genome, and instead broaden your analyses to include the rich biology of repetitive and mobile DNA. In this article, I present…

Read More »

Sunday, July 7, 2019

Probiotic genomes: Sequencing and annotation in the past decade

Probiotics are live microorganisms that confer many health benefits to the host when administered in adequate quantities. These health benefits have garnered much attention towards Probiotics and have given an impetus to their use as dietary supplements for the improvement of general health and as adjuvant therapies for certain diseases. The increased demand for probiotic products in the recent times has provided the thrust for probiotic research applied to several areas of human biology. The advances in genomic technologies have further facilitated the sequencing of the genomes of such probiotic bacteria and their genomic analyses to identify the genes that…

Read More »

1 21 22 23 24 25

Subscribe for blog updates:

Archives