Menu
July 7, 2019

A comprehensive model of DNA fragmentation for the preservation of High Molecular Weight DNA

During DNA extraction the DNA molecule undergoes physical and chemical shearing, causing the DNA to fragment into shorter and shorter pieces. Under common laboratory conditions this fragmentation yields DNA fragments of 5-35 kilobases (kb) in length. This fragment length is more than sufficient for DNA sequencing using short-read technologies which generate reads 50-600 bp in length, but insufficient for long-read sequencing and linked reads where fragment lengths of more than 40 kb may be desirable. This study provides a theoretical framework for quality management to ensure access to high molecular weight DNA in samples. Shearing can be divided into physical and chemical shearing which generate different patterns of fragmentation. Exposure to physical shearing creates a characteristic fragment length where DNA fragments are cut in half by shear stress. This characteristic length can be measured using gel electrophoresis or instruments for DNA fragment analysis. Chemical shearing generates randomly distributed fragment lengths visible as a smear of DNA below the peak fragment length. By measuring the peak of DNA fragment length and the proportion of very short DNA fragments both sources of shearing can be measured using commonly used laboratory techniques, providing a suitable quantification of DNA integrity of DNA for sequencing with long-read technologies.


July 7, 2019

An empirical evaluation of error correction methods and tools for next generation sequencing data

esearch. However, data produced by NGS is affected by different errors such as substitutions, deletions or insertion. It is essential to differentiate between true biological variants and alterations occurred due to errors for accurate downstream analysis. Many types of methods and tools have been developed for NGS error correction. Some of these methods only correct substitutions errors whereas others correct multi types of data errors. In this article, a comprehensive evaluation of three types of methods (k-spectrum based, Multi- sequencing alignment and Hybrid based) is presented which are implemented and adopted by different tools. Experiments have been conducted to compare the performance based on runtime and error correction rate. Two different computing platforms have been used for the experiments to evaluate effectiveness of runtime and error correction rate. The mission and aim of this comparative evaluation is to provide recommendations for selection of suitable tools to cope with the specific needs of users and practitioners. It has been noticed that k-mer spectrum based methodology generated superior results as compared to other methods. Amongst all the tools being utilized, Racer has shown eminent performance in terms of error correction rate and execution time for both small as well as large data sets. In multisequence alignment based tools, Karect depicts excellent error correction rate whereas Coral shows better execution time for all data sets. In hybrid based tools, Jabba shows better error correction rate and execution time as compared to brownie. Computing platforms mostly affect execution time but have no general effect on error correction rate.


July 7, 2019

Ten steps to get started in Genome Assembly and Annotation.

As a part of the ELIXIR-EXCELERATE efforts in capacity building, we present here 10 steps to facilitate researchers getting started in genome assembly and genome annotation. The guidelines given are broadly applicable, intended to be stable over time, and cover all aspects from start to finish of a general assembly and annotation project. Intrinsic properties of genomes are discussed, as is the importance of using high quality DNA. Different sequencing technologies and generally applicable workflows for genome assembly are also detailed. We cover structural and functional annotation and encourage readers to also annotate transposable elements, something that is often omitted from annotation workflows. The importance of data management is stressed, and we give advice on where to submit data and how to make your results Findable, Accessible, Interoperable, and Reusable (FAIR).


July 7, 2019

Oryza rufipogon Griff.

Oryza rufipogon, the progenitor of present-day cultivated rice, O. sativa, is one of the most studied wild species of rice. It is a perennial plant commonly found in a marsh or aquatic habitats of eastern and southern Asia. It has partial outcrossing behavior and is photoperiod sensitive. The flowering time usually ranges between September and November. It has been and is being exploited as a source of valuable genes and QTLs for yield components as well as resistance against biotic and abiotic stresses. A number of populations like chromosome segment substitution lines, backcross inbred lines, near-isogenic lines, and recombinant inbred lines have been developed from crosses between O. rufipogon and O. sativa as a prebreeding resource. These are being employed for broadening the genetic base of cultivated rice and diversify the breeder’s pool. With the advent of sequencing technologies, a number of phylogenetic studies have been conducted to reveal the evolutionary relationship of O. rufipogon with cultivated rice O. sativa. Further, transcriptomic studies characterizing the effect of various abiotic stresses have been conducted on this wild species. Role of miRNA under stress reaction has also been studied. Though the genetic, genomic, and transcriptomic resources are abundant, the proteomic resources for O. rufipogon are limited.


July 7, 2019

The ‘gifted’ actinomycete Streptomyces leeuwenhoekii.

Streptomyces leeuwenhoekii strains C34T, C38, C58 and C79 were isolated from a soil sample collected from the Chaxa Lagoon, located in the Salar de Atacama in northern Chile. These streptomycetes produce a variety of new specialised metabolites with antibiotic, anti-cancer and anti-inflammatory activities. Moreover, genome mining performed on two of these strains has revealed the presence of biosynthetic gene clusters with the potential to produce new specialised metabolites. This review focusses on this new clade of Streptomyces strains, summarises the literature and presents new information on strain C34T.


July 7, 2019

Natural rubber and the Russian dandelion genome

The world needs rubber. Rubber is crucial for the tires on the cars, trucks and airplanes that propel modern transportation. It is equally important for daily tasks: latex gloves in the lab, balloons in angioplasty and wetsuits that warm a cold dip in the ocean. Rubber can be made synthetically from petroleum derivatives, but synthetic rubber is not as strong as rubber iso- lated from plants. The principal plant source for natural rubber (NR) is the sap of the Par´ a tree (Hevea brasiliensis), which is grown throughout Southeast Asia. Unfortunately, the produc- tion capacity of the Par´ a tree is limited by the availability of suitable land and by labor-intensive harvesting methods. The sustainability of the Par´ a crop is also constrained by its narrow genetic base, which may make the crop susceptible to disease.


July 7, 2019

Rooting for new sources of natural rubber

Global production of natural rubber (NR) depends overwhelmingly on the Pará rubber tree (Hevea brasiliensis), a slow-growing tropical tree that is threatened by low genetic diversity and high susceptibility to fungal blight [1]. Alternative rubber sources have been sought for more than a century, but very few species have been found that produce rubber of comparable quality [2]. One of the brightest candidates, first noticed by breeders in Soviet-era Russia, is Taraxacum kok-saghyz (commonly called TKS). This close relative of the common weedy dandelion has a number of attractive features. As a native of central Asia, TKS can be cultivated as a hardy, annual field crop in temperate climates. Its natural latex, produced at highest levels in the roots, yields a high-molecular-weight NR that is chemically similar to the rubber tree and far superior to synthetic rubber. And, as an added bonus, TKS produces inulin, a dietary fiber and low-glycemic-index sweetener that can be fermented for industrial bioethanol production. What TKS has lacked—until now—is an assembled reference genome that could be used for genome-enabled crop improvement and elucidation of the pathways for rubber and inulin biosynthesis. In their paper published in this issue, Jiayang Li, Hong Yu and colleagues [3] have taken a major step in rectifying that problem.


July 7, 2019

Synthetic biology, genome mining, and combinatorial biosynthesis of NRPS-derived antibiotics: a perspective.

Combinatorial biosynthesis of novel secondary metabolites derived from nonribosomal peptide synthetases (NRPSs) has been in slow development for about a quarter of a century. Progress has been hampered by the complexity of the giant multimodular multienzymes. More recently, advances have been made on understanding the chemical and structural biology of these complex megaenzymes, and on learning the design rules for engineering functional hybrid enzymes. In this perspective, I address what has been learned about successful engineering of complex lipopeptides related to daptomycin, and discuss how synthetic biology and microbial genome mining can converge to broaden the scope and enhance the speed and robustness of combinatorial biosynthesis of NRPS-derived natural products for drug discovery.


July 7, 2019

Sustaining global agriculture through rapid detection and deployment of genetic resistance to deadly crop diseases.

Contents Summary 45 I. Introduction 45 II. Targeted chromosome-based cloning via long-range assembly (TACCA) 46 III. Resistance gene cloning through mutational mapping (MutMap) 47 IV. Cloning through mutant chromosome sequencing (MutChromSeq) 47 V. Rapid cloning through resistance gene enrichment and sequencing (RenSeq) 49 VI. Cloning resistance genes through transcriptome profiling (RNAseq) 49 VII. Resistance gene deployment strategies 49 VIII. Conclusions 50 Acknowledgements 50 References 50 SUMMARY: Genetically encoded resistance is a major component of crop disease management. Historically, gene loci conferring resistance to pathogens have been identified through classical genetic methods. In recent years, accelerated gene cloning strategies have become available through advances in sequencing, gene capture and strategies for reducing genome complexity. Here, I describe these approaches with key emphasis on the isolation of resistance genes to the cereal crop diseases that are an ongoing threat to global food security. Rapid gene isolation enables their efficient deployment through marker-assisted selection and transgenic technology. Together with innovations in genome editing and progress in pathogen virulence studies, this creates further opportunities to engineer long-lasting resistance. These approaches will speed progress towards a future of farming using fewer pesticides.© 2017 Commonwealth of Australia. New Phytologist © 2017 New Phytologist Trust.


July 7, 2019

Satellite DNA evolution: old ideas, new approaches.

A substantial portion of the genomes of most multicellular eukaryotes consists of large arrays of tandemly repeated sequence, collectively called satellite DNA. The processes generating and maintaining different satellite DNA abundances across lineages are important to understand as satellites have been linked to chromosome mis-segregation, disease phenotypes, and reproductive isolation between species. While much theory has been developed to describe satellite evolution, empirical tests of these models have fallen short because of the challenges in assessing satellite repeat regions of the genome. Advances in computational tools and sequencing technologies now enable identification and quantification of satellite sequences genome-wide. Here, we describe some of these tools and how their applications are furthering our knowledge of satellite evolution and function. Copyright © 2018 Elsevier Ltd. All rights reserved.


July 7, 2019

To B or not to B: a tale of unorthodox chromosomes.

Highlights • B chromosomes are dispensable parts of the karyotype of many eukaryotes. • Deemed genome parasites in plants and animals, provide advantage to pathogenic fungi. • Often enriched in repeats and in fast evolving pathogenicity-related genes. • B chromosomes are not a uniform class, share certain features with core chromosomes.


July 7, 2019

The sequenced angiosperm genomes and genome databases.

Angiosperms, the flowering plants, provide the essential resources for human life, such as food, energy, oxygen, and materials. They also promoted the evolution of human, animals, and the planet earth. Despite the numerous advances in genome reports or sequencing technologies, no review covers all the released angiosperm genomes and the genome databases for data sharing. Based on the rapid advances and innovations in the database reconstruction in the last few years, here we provide a comprehensive review for three major types of angiosperm genome databases, including databases for a single species, for a specific angiosperm clade, and for multiple angiosperm species. The scope, tools, and data of each type of databases and their features are concisely discussed. The genome databases for a single species or a clade of species are especially popular for specific group of researchers, while a timely-updated comprehensive database is more powerful for address of major scientific mysteries at the genome scale. Considering the low coverage of flowering plants in any available database, we propose construction of a comprehensive database to facilitate large-scale comparative studies of angiosperm genomes and to promote the collaborative studies of important questions in plant biology.


July 7, 2019

Phylogeny of dermatophytes with genomic character evaluation of clinically distinct Trichophyton rubrum and T. áviolaceum

Trichophyton rubrum and T. violaceum are prevalent agents of human dermatophyte infections, the former being found on glabrous skin and nail, while the latter is confined to the scalp. The two species are phenotypically different but are highly similar phylogenetically. The taxonomy of dermatophytes is currently being reconsidered on the basis of molecular phylogeny. Molecular species definitions do not always coincide with existing concepts which are guided by ecological and clinical principles. In this article, we aim to bring phylogenetic and ecological data together in an attempt to develop new species concepts for anthropophilic dermatophytes. Focus is on the T. rubrum complex with analysis of rDNA ITS supplemented with LSU, TUB2, TEF3 and ribosomal protein L10 gene sequences. In order to explore genomic differences between T. rubrum and T. violaceum, one representative for both species was whole genome sequenced. Draft sequences were compared with currently available dermatophyte genomes. Potential virulence factors of adhesins and secreted proteases were predicted and compared phylogenetically. General phylogeny showed clear gaps between geophilic species of Arthroderma, but multilocus distances between species were often very small in the derived anthropophilic and zoophilic genus Trichophyton. Significant genome conservation between T. rubrum and T. violaceum was observed, with a high similarity at the nucleic acid level of 99.38 % identity. Trichophyton violaceum contains more paralogs than T. rubrum. About 30 adhesion genes were predicted among dermatophytes. Seventeen adhesins were common between T. rubrum and T. violaceum, while four were specific for the former and eight for the latter. Phylogenetic analysis of secreted proteases reveals considerable expansion and conservation among the analyzed species. Multilocus phylogeny and genome comparison of T. rubrum and T. violaceum underlined their close affinity. The possibility that they represent a single species exhibiting different phenotypes due to different localizations on the human body is discussed.


July 7, 2019

The case for not masking away repetitive DNA

In the course of analyzing whole-genome data, it is common practice to mask or filter out repetitive regions of a genome, such as transposable elements and endogenous retroviruses, in order to focus only on genes and thus simplify the results. This Commentary is a plea from one member of the Mobile DNA community to all gene-centric researchers: please do not ignore the repetitive fraction of the genome. Please stop narrowing your findings by only analyzing a minority of the genome, and instead broaden your analyses to include the rich biology of repetitive and mobile DNA. In this article, I present four arguments supporting a case for retaining repetitive DNA in your genome-wide analysis.


July 7, 2019

Probiotic genomes: Sequencing and annotation in the past decade

Probiotics are live microorganisms that confer many health benefits to the host when administered in adequate quantities. These health benefits have garnered much attention towards Probiotics and have given an impetus to their use as dietary supplements for the improvement of general health and as adjuvant therapies for certain diseases. The increased demand for probiotic products in the recent times has provided the thrust for probiotic research applied to several areas of human biology. The advances in genomic technologies have further facilitated the sequencing of the genomes of such probiotic bacteria and their genomic analyses to identify the genes that endow the beneficial effects they are known to exert. This work reviews the application of genomic strategies on probiotic bacteria, while providing the details about the probiotic strains whose genome sequences are available. It also consolidates the Genomic tools used for the sequencing, assembly and annotation of the probiotic genes and how it has helped in comparative genomic analyses.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.