Menu
July 7, 2019  |  

Mobile genetic elements: in silico, in vitro, in vivo.

Mobile genetic elements (MGEs), also called transposable elements (TEs), represent universal components of most genomes and are intimately involved in nearly all aspects of genome organization, function and evolution. However, there is currently a gap between the fast pace of TE discovery in silico, driven by the exponential growth of comparative genomic studies, and a limited number of experimental models amenable to more traditional in vitro and in vivo studies of structural, mechanistic and regulatory properties of diverse MGEs. Experimental and computational scientists came together to bridge this gap at a recent conference, ‘Mobile Genetic Elements: in silico, in vitro, in vivo’, held at the Marine Biological Laboratory (MBL) in Woods Hole, MA, USA.© 2016 John Wiley & Sons Ltd.


July 7, 2019  |  

Towards integration of population and comparative genomics in forest trees.

The past decade saw the initiation of an ongoing revolution in sequencing technologies that is transforming all fields of biology. This has been driven by the advent and widespread availability of high-throughput, massively parallel short-read sequencing (MPS) platforms. These technologies have enabled previously unimaginable studies, including draft assemblies of the massive genomes of coniferous species and population-scale resequencing. Transcriptomics studies have likewise been transformed, with RNA-sequencing enabling studies in nonmodel organisms, the discovery of previously unannotated genes (novel transcripts), entirely new classes of RNAs and previously unknown regulatory mechanisms. Here we touch upon current developments in the areas of genome assembly, comparative regulomics and population genetics as they relate to studies of forest tree species.© 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.


July 7, 2019  |  

Probabilistic viral quasispecies assembly

Viruses are pathogens that cause infectious diseases. The swarm of virions is subject to the host’s immune pressure and possibly antiviral therapy. It may escape this selective pressure and gain selective advantage by acquiring one or more of the genomic alterations: single-nucleotide variants (SNVs), loss or gain of one or more amino acids, large deletions, for example, due to alternative splicing, or recombination of different strains. Genotypic antiretroviral drug resistance testing is performed via sequencing. Next-generation sequencing (NGS) technologies revolutionized assessing viral genetic diversity experimentally. In viral quasispecies analysis, there are two main goals: the identification of low-frequency variants and haplotype assembly on a whole-genome scale. PacBio performs single-molecule sequencing. This chapter elaborates human haplotyping and its relationship to probabilistic viral haplotype reconstruction methods. Viral quasispecies assembly has the potential to replace the current de facto diversity estimation by SNV calling. With advances in library preparation, increasing sensitivity of sequencing platforms, and more sophisticated models, it might be possible to detect all or most viral strains in a single individual.


July 7, 2019  |  

Recent “omics” advances in Helicobacter pylori.

The development of high-throughput whole genome sequencing (WGS) technologies is changing the face of microbiology, facilitating the comparison of large numbers of genomes from different lineages of a same organism. Our aim was to review the main advances on Helicobacter pylori “omics” and to understand how this is improving our knowledge of the biology, diversity and pathogenesis of H. pylori. Since the first H. pylori isolate was sequenced in 1997, 510 genomes have been deposited in the NCBI archive, providing a basis for improved understanding of the epidemiology and evolution of this important pathogen. This review focuses on works published between April 2015 and March 2016. Helicobacter “omics” is already making an impact and is a growing research field. Ultimately these advances will be translated into a routine clinical laboratory setting in order to improve public health.© 2016 John Wiley & Sons Ltd.


July 7, 2019  |  

Highlights of the 11th International Bordetella Symposium: from basic biology to vaccine development.

Pertussis is a severe respiratory disease caused by infection with the bacterial pathogen Bordetella pertussis The disease affects individuals of all ages but is particularly severe and sometimes fatal in unvaccinated young infants. Other Bordetella species cause diseases in humans, animals, and birds. Scientific, clinical, public health, vaccine company, and regulatory agency experts on these pathogens and diseases gathered in Buenos Aires, Argentina from 5 to 8 April 2016 for the 11th International Bordetella Symposium to discuss recent advances in our understanding of the biology of these organisms, the diseases they cause, and the development of new vaccines and other strategies to prevent these diseases. Highlights of the meeting included pertussis epidemiology in developing nations, genomic analysis of Bordetella biology and evolution, regulation of virulence factor expression, new model systems to study Bordetella biology and disease, effects of different vaccines on immune responses, maternal immunization as a strategy to prevent newborn disease, and novel vaccine development for pertussis. In addition, the group approved the formation of an International Bordetella Society to promote research and information exchange on bordetellae and to organize future meetings. A new Bordetella.org website will also be developed to facilitate these goals. Copyright © 2016, American Society for Microbiology. All Rights Reserved.


July 7, 2019  |  

Genomic insights into Campylobacter jejuni virulence and population genetics

Campylobacter jejuni has long been recognized as a main food-borne pathogen in many parts of the world. Natural reservoirs include a wide variety of domestic and wild birds and mammals, whose intestines offer a suitable biological niche for the survival and dissemination of the organism. Understanding the genetic basis of the biology and pathogenicity of C. jejuni is vital to prevent and control Campylobacter-associated infections. The recent progress in sequencing techniques has allowed for a rapid increase in our knowledge of the molecular biology and the genetic structures of Campylobacter. Single-molecule realtime (SMRT) sequencing, which goes beyond four-base sequencing, revealed the role of DNA methylation in modulating the biology and virulence of C. jejuni at the level of epigenetics. In this review, we will provide an up-to-date review on recent advances in understanding C. jejuni genomics, including structural features of genomes, genetic traits of virulence, population genetics, and epigenetics.


July 7, 2019  |  

Epigenetic mechanisms in microbial members of the human microbiota: current knowledge and perspectives.

The human microbiota and epigenetic processes have both been shown to play a crucial role in health and disease. However, there is extremely scarce information on epigenetic modulation of microbiota members except for a few pathogens. Mainly DNA adenine methylation has been described extensively in modulating the virulence of pathogenic bacteria in particular. It would thus appear likely that such mechanisms are widespread for most bacterial members of the microbiota. This review will present briefly the current knowledge on epigenetic processes in bacteria, give examples of known methylation processes in microbial members of the human microbiota and summarize the knowledge on regulation of host epigenetic processes by the human microbiota.


July 7, 2019  |  

Serinibacter

The genus Serinibacter belongs, based on the phylogenetic analysis of the nearly full-length 16S rRNA gene, to the Beutenbergiaceae together with the genera Beutenbergia, Salana, and Miniimonas. The two species of the genus Serinibacter shared 99.6% 16S rRNA gene sequence similarity but low DNA DNA relatedness. Cells are irregular rods, Gram-stain positive, not acid-fast. Endospores are not formed. Nonmotile. Aerobic to anaerobic. Oxidase-negative, catalase-positive. The peptidoglycan type is A4a with an l-Ser residue at position 1 of the peptide subunit. The acyl type is acetyl. The major cell-wall sugar is galactose. The predominant menaquinone is MK-8(H4). The major polar lipids consist of phosphatidylglycerol, diphosphatidylglycerol, phosphatidylinositol, and unidentified phospholipids. Phosphatidylethanolamine is absent. The cellular fatty acid profile is dominated by the occurrence of iso- and anteiso-branched-chain acids. Mycolic acids are absent. The genomic G+C content is 70.7 to 72.8 mol%.


July 7, 2019  |  

Microbial sequence typing in the genomic era.

Next-generation sequencing (NGS), also known as high-throughput sequencing, is changing the field of microbial genomics research. NGS allows for a more comprehensive analysis of the diversity, structure and composition of microbial genes and genomes compared to the traditional automated Sanger capillary sequencing at a lower cost. NGS strategies have expanded the versatility of standard and widely used typing approaches based on nucleotide variation in several hundred DNA sequences and a few gene fragments (MLST, MLVA, rMLST and cgMLST). NGS can now accommodate variation in thousands or millions of sequences from selected amplicons to full genomes (WGS, NGMLST and HiMLST). To extract signals from high-dimensional NGS data and make valid statistical inferences, novel analytic and statistical techniques are needed. In this review, we describe standard and new approaches for microbial sequence typing at gene and genome levels and guidelines for subsequent analysis, including methods and computational frameworks. We also present several applications of these approaches to some disciplines, namely genotyping, phylogenetics and molecular epidemiology. Copyright © 2017 Elsevier B.V. All rights reserved.


July 7, 2019  |  

FDA-CDC antimicrobial resistance isolate bank: A publicly-available resource to support research, development and regulatory requirements.

The FDA-CDC Antimicrobial Resistance Isolate Bank was created in July 2015 as a publicly available resource to combat antimicrobial resistance. It is a curated repository of bacterial isolates with an assortment of clinically-important resistance mechanisms that have been phenotypically and genotypically characterized. In the first two years of operation, the Bank offered 14 panels comprising 496 unique isolates and had filled 486 orders from 394 institutions throughout the United States. New panels are being added. Copyright © 2017 American Society for Microbiology.


July 7, 2019  |  

Enhancing the accuracy of next-generation sequencing for detecting rare and subclonal mutations.

Mutations, the fuel of evolution, are first manifested as rare DNA changes within a population of cells. Although next-generation sequencing (NGS) technologies have revolutionized the study of genomic variation between species and individual organisms, most have limited ability to accurately detect and quantify rare variants among the different genome copies in heterogeneous mixtures of cells or molecules. We describe the technical challenges in characterizing subclonal variants using conventional NGS protocols and the recent development of error correction strategies, both computational and experimental, including consensus sequencing of single DNA molecules. We also highlight major applications for low-frequency mutation detection in science and medicine, describe emerging methodologies and provide our vision for the future of DNA sequencing.


July 7, 2019  |  

Recent progress and prospects for advancing arachnid genomics

Arachnids exhibit tremendous species richness and adaptations of biomedical, industrial, and agricultural importance. Yet genomic resources for arachnids are limited, with the first few spider and scorpion genomes becoming accessible in the last four years. We review key insights from these genome projects, and recommend additional genomes for sequencing, emphasizing taxa of greatest value to the scientific community. We suggest greater sampling of spiders whose genomes are understudied but hold important protein recipes for silk and venom production. We further recommend arachnid genomes to address significant evolutionary topics, including the phenotypic impact of genome duplications. A barrier to high-quality arachnid genomes are assemblies based solely on short-read data, which may be overcome by long-range sequencing and other emerging methods.


July 7, 2019  |  

Lepidoptera genomes: current knowledge, gaps and future directions.

Butterflies and moths (Lepidoptera) are one of the most ecologically diverse and speciose insect orders. With recent advances in genomics, new Lepidoptera genomes are regularly being sequenced, and many of them are playing principal roles in genomics studies, particularly in the fields of phylo-genomics and functional genomics. Thus far, assembled genomes are only available for <10 of the 43 Lepidoptera superfamilies. Nearly all are model species, found in the speciose clade Ditrysia. Community support for Lepidoptera genomics is growing with successful management and dissemination of data and analytical tools in centralized databases. With genomic studies quickly becoming integrated with ecological and evolutionary research, the Lepidoptera community will unquestionably benefit from new high-quality reference genomes that are more evenly distributed throughout the order. Copyright © 2018 Elsevier Inc. All rights reserved.


July 7, 2019  |  

Current advances in genome sequencing of common wheat and its ancestral species

Common wheat is an important and widely cultivated food crop throughout the world. Much progress has been made in regard to wheat genome sequencing in the last decade. Starting from the sequencing of single chromosomes/chromosome arms whole genome sequences of common wheat and its diploid and tetraploid ancestors have been decoded along with the development of sequencing and assembling technologies. In this review, we give a brief summary on international progress in wheat genome sequencing, and mainly focus on reviewing the effort and contributions made by Chinese scientists.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.