Menu
July 7, 2019  |  

Environmental changes bridge evolutionary valleys.

In the basic fitness landscape metaphor for molecular evolution, evolutionary pathways are presumed to follow uphill steps of increasing fitness. How evolution can cross fitness valleys is an open question. One possibility is that environmental changes alter the fitness landscape such that low-fitness sequences reside on a hill in alternate environments. We experimentally test this hypothesis on the antibiotic resistance gene TEM-15 ß-lactamase by comparing four evolutionary strategies shaped by environmental changes. The strategy that included initial steps of selecting for low antibiotic resistance (negative selection) produced superior alleles compared with the other three strategies. We comprehensively examined possible evolutionary pathways leading to one such high-fitness allele and found that an initially deleterious mutation is key to the allele’s evolutionary history. This mutation is an initial gateway to an otherwise relatively inaccessible area of sequence space and participates in higher-order, positive epistasis with a number of neutral to slightly beneficial mutations. The ability of negative selection and environmental changes to provide access to novel fitness peaks has important implications for natural evolutionary mechanisms and applied directed evolution.


July 7, 2019  |  

A phylogenetic and phenotypic analysis of Salmonella enterica serovar Weltevreden, an emerging agent of diarrheal disease in tropical regions.

Salmonella enterica serovar Weltevreden (S. Weltevreden) is an emerging cause of diarrheal and invasive disease in humans residing in tropical regions. Despite the regional and international emergence of this Salmonella serovar, relatively little is known about its genetic diversity, genomics or virulence potential in model systems. Here we used whole genome sequencing and bioinformatics analyses to define the phylogenetic structure of a diverse global selection of S. Weltevreden. Phylogenetic analysis of more than 100 isolates demonstrated that the population of S. Weltevreden can be segregated into two main phylogenetic clusters, one associated predominantly with continental Southeast Asia and the other more internationally dispersed. Subcluster analysis suggested the local evolution of S. Weltevreden within specific geographical regions. Four of the isolates were sequenced using long read sequencing to produce high quality reference genomes. Phenotypic analysis in Hep-2 cells and in a murine infection model indicated that S. Weltevreden were significantly attenuated in these models compared to the classical S. Typhimurium reference strain SL1344. Our work outlines novel insights into this important emerging pathogen and provides a baseline understanding for future research studies.


July 7, 2019  |  

Whole genome sequence of Klebsiella pneumoniae U25, a hypermucoviscous, multidrug resistant, biofilm producing isolate from India.

Klebsiella pneumoniae U25 is a multidrug resistant strain isolated from a tertiary care hospital in Chennai, India. Here, we report the complete annotated genome sequence of strain U25 obtained using PacBio RSII. This is the first report of the whole genome of K. pneumoniaespecies from Chennai. It consists of a single circular chromosome of size 5,491,870-bp and two plasmids of size 211,813 and 172,619-bp. The genes associated with multidrug resistance were identified. The chromosome of U25 was found to have eight antibiotic resistant genes [blaOXA-1,blaSHV-28, aac(6′)1b-cr,catB3, oqxAB, dfrA1]. The plasmid pMGRU25-001 was found to have only one resistant gene (catA1) while plasmid pMGRU25-002 had 20 resistant genes [strAB, aadA1,aac(6′)-Ib, aac(3)-IId,sul1,2, blaTEM-1A,1B,blaOXA-9, blaCTX-M-15,blaSHV-11, cmlA1, erm(B),mph(A)]. A mutation in the porin OmpK36 was identified which is likely to be associated with the intermediate resistance to carbapenems in the absence of carbapenemase genes. U25 is one of the few K. pneumoniaestrains to harbour clustered regularly interspaced short palindromic repeats (CRISPR) systems. Two CRISPR arrays corresponding to Cas3 family helicase were identified in the genome. When compared to K. pneumoniaeNTUHK2044, a transposase gene InsH of IS5-13 was found inserted.


July 7, 2019  |  

Complete genome sequence of the African strain AXO1947 of Xanthomonas oryzae pv. oryzae.

Xanthomonas oryzae pv. oryzae is the etiological agent of bacterial rice blight. Three distinct clades of X. oryzae pv. oryzae are known. We present the complete annotated genome of the African clade strain AXO194 using long-read single-molecule PacBio sequencing technology. The genome comprises a single chromosome of 4,674,975 bp and encodes for nine transcriptional activator-like (TAL) effectors. The approach and data presented in this announcement provide information for complex bacterial genome organization and the discovery of new virulence effectors, and they facilitate target characterization of TAL effectors. Copyright © 2016 Huguet-Tapia et al.


July 7, 2019  |  

Rapid emergence and evolution of Staphylococcus aureus clones harbouring fusC-containing Staphylococcal cassette chromosome elements.

The prevalence of fusidic acid (FA) resistance amongst Staphylococcus aureus in New Zealand (NZ) is amongst the highest reported globally, with a recent study describing a resistance rate of approximately 28%. Three FA-resistant S. aureus clones (ST5 MRSA, ST1 MSSA and ST1 MRSA) have emerged over the past decade and now predominate in NZ, and in all three clones FA resistance is mediated by the fusC gene. In particular, ST5 MRSA has rapidly become the dominant MRSA clone in NZ, although the origin of FA-resistant ST5 MRSA has not been explored, and the genetic context of fusC in FA-resistant NZ isolates is unknown. To better understand the rapid emergence of FA-resistant S. aureus, we used population-based comparative genomics to characterise a collection of FA-resistant and FA-susceptible isolates from NZ. FA-resistant NZ ST5 MRSA displayed minimal genetic diversity, and represented a phylogenetically distinct clade within a global population model of clonal complex 5 (CC5) S. aureus. In all lineages, fusC was invariably located within staphylococcal cassette chromosome (SCC) elements, suggesting that SCC-mediated horizontal transfer is the primary mechanism of fusC dissemination. The genotypic association of fusC with mecA has important implications for the emergence of MRSA clones in populations with high usage of fusidic acid. In addition, we found that fusC was co-located with a recently described virulence factor (tirS) in dominant NZ S. aureus clones, suggesting a potential fitness advantage. This study points to the likely molecular mechanisms responsible for the successful emergence and spread of FA-resistant S. aureus. Copyright © 2016 Baines et al.


July 7, 2019  |  

The emergence and intercontinental spread of a multidrug-resistant clade of typhoid agent Salmonella enterica serovar Typhi

Multidrug-resistant typhoid is a global health problem. Previous studies conducted in countries of Asia and Africa have identified a highly clonal, multidrug-resistant lineage of Salmonella enterica serovar Typhi (S Typhi), known as H58. However, little is known about the emergence and geographical spread of the H58 clade. In this study, we have used whole-genome sequencing of a global collection of S Typhi to investigate this highly successful lineage.


July 7, 2019  |  

Population structure and antimicrobial resistance profiles of Streptococcus suis serotype 2 sequence type 25 strains

Strains of serotype 2 Streptococcus suis are responsible for swine and human infections. Different serotype 2 genetic backgrounds have been defined using multilocus sequence typing (MLST). However, little is known about the genetic diversity within each MLST sequence type (ST). Here, we used whole-genome sequencing to test the hypothesis that S. suis serotype 2 strains of the ST25 lineage are genetically heterogeneous. We evaluated 51 serotype 2 ST25 S. suis strains isolated from diseased pigs and humans in Canada, the United States of America, and Thailand. Whole-genome sequencing revealed numerous large-scale rearrangements in the ST25 genome, compared to the genomes of ST1 and ST28 S. suis strains, which result, among other changes, in disruption of a pilus island locus. We report that recombination and lateral gene transfer contribute to ST25 genetic diversity. Phylogenetic analysis identified two main and distinct Thai and North American clades grouping most strains investigated. These clades also possessed distinct patterns of antimicrobial resistance genes, which correlated with acquisition of different integrative and conjugative elements (ICEs). Some of these ICEs were found to be integrated at a recombination hot spot, previously identified as the site of integration of the 89K pathogenicity island in serotype 2 ST7 S. suis strains. Our results highlight the limitations of MLST for phylogenetic analysis of S. suis, and the importance of lateral gene transfer and recombination as drivers of diversity in this swine pathogen and zoonotic agent.


July 7, 2019  |  

Indica rice genome assembly, annotation and mining of blast disease resistance genes.

Rice is a major staple food crop in the world. Over 80 % of rice cultivation area is under indica rice. Currently, genomic resources are lacking for indica as compared to japonica rice. In this study, we generated deep-sequencing data (Illumina and Pacific Biosciences sequencing) for one of the indica rice cultivars, HR-12 from India.We assembled over 86 % (389 Mb) of rice genome and annotated 56,284 protein-coding genes from HR-12 genome using Illumina and PacBio sequencing. Comprehensive comparative analyses between indica and japonica subspecies genomes revealed a large number of indica specific variants including SSRs, SNPs and InDels. To mine disease resistance genes, we sequenced few indica rice cultivars that are reported to be highly resistant (Tetep and Tadukan) and susceptible (HR-12 and Co-39) against blast fungal isolates in many countries including India. Whole genome sequencing of rice genotypes revealed high rate of mutations in defense related genes (NB-ARC, LRR and PK domains) in resistant cultivars as compared to susceptible. This study has identified R-genes Pi-ta and Pi54 from durable indica resistant cultivars; Tetep and Tadukan, which can be used in marker assisted selection in rice breeding program.This is the first report of whole genome sequencing approach to characterize Indian rice germplasm. The genomic resources from our work will have a greater impact in understanding global rice diversity, genetics and molecular breeding.


July 7, 2019  |  

Dissemination of the mcr-1 colistin resistance gene.

Since our first report on plasmid- mediated colistin resistance gene mcr-1,1 strains previously collected in seven countries (Denmark, the Netherlands, Laos, Nigeria, Thailand, France, and the UK) have been found to carry mcr-1.2–6 Furthermore, the sequences in GenBank show that mcr-1 might also be circulating in Portugal and Malaysia. The earliest mcr-1- positive strain was collected from cattle in France in 2008 (GenBank accession number LMBK01000308). These findings confirm our initial concern that mcr-1 could have already disseminated worldwide.


July 7, 2019  |  

A pigeonpea gene confers resistance to Asian soybean rust in soybean.

Asian soybean rust (ASR), caused by the fungus Phakopsora pachyrhizi, is one of the most economically important crop diseases, but is only treatable with fungicides, which are becoming less effective owing to the emergence of fungicide resistance. There are no commercial soybean cultivars with durable resistance to P. pachyrhizi, and although soybean resistance loci have been mapped, no resistance genes have been cloned. We report the cloning of a P. pachyrhizi resistance gene CcRpp1 (Cajanus cajan Resistance against Phakopsora pachyrhizi 1) from pigeonpea (Cajanus cajan) and show that CcRpp1 confers full resistance to P. pachyrhizi in soybean. Our findings show that legume species related to soybean such as pigeonpea, cowpea, common bean and others could provide a valuable and diverse pool of resistance traits for crop improvement.


July 7, 2019  |  

Complete nucleotide sequence of pH11, an IncHI2 plasmid conferring multi-antibiotic resistance and multi-heavy metal resistance genes in a clinical Klebsiella pneumoniae isolate.

The complete 284,628bp sequence of pH11, an IncHI2 plasmid, was determined through single-molecule, real-time (SMRT) sequencing. Harbored by a clinical Klebsiella pneumoniae strain H11, and isolated in Beijing, this plasmid contains multiple antibiotic resistance genes, including catA2, aac(6′)-Ib, strB, strA, dfrA19, blaTEM-1, blaSHV-12, sul1, qacE delta 1, ereA, arr2, and aac3. The aac(6′)-Ib is carried by a class I integron. Plasmid pH11 also carries several genes associated with resistance to heavy metals, such as tellurium, mercury, cobalt, zinc, nickel, copper, lead and cadmium. This plasmid exhibits numerous characteristics, including HipBA and RelBE toxin-antitoxin systems, two major transfer (Tra) regions closely related to those of Salmonella enterica serovar plasmid pRH-R27, a type II restriction modification system (EcoRII R-M system), several methyltransferases and methylases and genes encoding Hha and StpA. These characteristics suggest that pH11 may adapt to various hosts and environments. Multiple insertion sequence elements, transposases, recombinases, resolvases and integrases are scattered throughout pH11. The presence of these genes may indicate that horizontal gene transfer occurs frequently in pH11 and thus may facilitate the dissemination of antimicrobial resistance determinants. Our data suggest that pH11 is a chimera gradually assembled through the integration of different horizontally acquired DNA segments via transposition or homologous recombination. Copyright © 2016 Elsevier Inc. All rights reserved.


July 7, 2019  |  

Antibiotic resistance mechanisms of Myroides sp.

Bacteria of the genus Myroides (Myroides spp.) are rare opportunistic pathogens. Myroides sp. infections have been reported mainly in China. Myroides sp. is highly resistant to most available antibiotics, but the resistance mechanisms are not fully elucidated. Current strain identification methods based on biochemical traits are unable to identify strains accurately at the species level. While 16S ribosomal RNA (rRNA) gene sequencing can accurately achieve this, it fails to give information on the status and mechanisms of antibiotic resistance, because the 16S rRNA sequence contains no information on resistance genes, resistance islands or enzymes. We hypothesized that obtaining the whole genome sequence of Myroides sp., using next generation sequencing methods, would help to clarify the mechanisms of pathogenesis and antibiotic resistance, and guide antibiotic selection to treat Myroides sp. infections. As Myroides sp. can survive in hospitals and the environment, there is a risk of nosocomial infections and pandemics. For better management of Myroides sp. infections, it is imperative to apply next generation sequencing technologies to clarify the antibiotic resistance mechanisms in these bacteria.


July 7, 2019  |  

Dynamics of mutations during development of resistance by Pseudomonas aeruginosa against five antibiotics.

Pseudomonas aeruginosa is an opportunistic pathogen that causes considerable morbidity and mortality, specifically in the intensive care. Antibiotic resistant variants of this organism are more difficult to treat and cause substantial extra costs compared to susceptible strains. In the laboratory, P. aeruginosa rapidly developed resistance against five medically relevant antibiotics upon exposure to step-wise increasing concentrations. At several time points during the acquisition of resistance samples were taken for whole genome sequencing. The increase of MIC for ciprofloxacin was linked to specific mutations in gyrA, parC and gyrB, appearing sequentially. In the case of tobramycin, mutations were induced in fusA, HP02880, rplB and capD The MIC for the beta-lactam compounds meropenem, ceftazidime and the combination piperacillin/tazobactam correlated linearly with the beta-lactamase activity, but not always with individual mutations. The genes that were mutated during development of beta-lactam resistance differed for each antibiotic. A quantitative relationship between the frequency of mutations and the increase in resistance could not be established for any of the antibiotics. When the adapted strains are grown in the absence of the antibiotic, some mutations remained and others were reverted, but this reversal did not necessarily lower the MIC. The increased MIC came at the cost of moderately reduced cellular functions, or somewhat lower growth rate. In all cases except ciprofloxacin, the increase of resistance seems to be the result of a complex interaction between several cellular systems, rather than individual mutations. Copyright © 2016, American Society for Microbiology. All Rights Reserved.


July 7, 2019  |  

Complete genome sequence of Klebsiella quasipneumoniae subsp. similipneumoniae strain ATCC 700603.

Klebsiella quasipneumoniae subsp. similipneumoniae strain ATCC 700603, formerly known as K. pneumoniae K6, is known for producing extended-spectrum ß-lactamase (ESBL) enzymes that can hydrolyze oxyimino-ß-lactams, resulting in resistance to these drugs. We herein report the complete genome of strain ATCC 700603 and show that the ESBL genes are plasmid-encoded. Copyright © 2016 Elliott et al.


July 7, 2019  |  

Resistance from relatives.

Crops are made resistant to pathogens such as wheat stem rust, Asian soybean rust and potato late blight by methods to access the pool of resistance genes present in related plants.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.