Menu
July 7, 2019  |  

Complete genome sequence of Pseudomonas corrugata strain RM1-1-4, a stress protecting agent from the rhizosphere of an oilseed rape bait plant

Pseudomonas corrugata strain RM1-1-4 is a rhizosphere colonizer of oilseed rape. A previous study has shown that this motile, Gram-negative, non-sporulating bacterium is an effective stress protecting and biocontrol agent, which protects their hosts against abiotic and biotic stresses. Here, we announce and describe the complete genome sequence of P. corrugata RM1-1-4 consisting of a single 6.1 Mb circular chromosome that encodes 5189 protein coding genes and 85 RNA-only encoding genes. Genome analysis revealed genes predicting functions such as detoxifying mechanisms, stress inhibitors, exoproteases, lipoproteins or volatile components as well as rhizobactin siderophores and spermidine. Further analysis of its genome will help to identify traits promising for stress protection, biocontrol and plant growth promotion properties.


July 7, 2019  |  

Complete and draft genome sequences of eight oceanic Pseudomonas aeruginosa strains.

Pseudomonas aeruginosa is one of the most common model bacterial species, and genomes of hundreds of strains of this species have been sequenced to date. However, currently there is only one available genome of an oceanic isolate. Here, we report two complete and six draft genome sequences of P. aeruginosa isolates from the open ocean. Copyright © 2017 Kumagai et al.


July 7, 2019  |  

pSY153-MDR, a p12969-DIM-related mega plasmid carrying blaIMP-45 and armA, from clinical Pseudomonas putida.

This work characterized mega plasmid pSY153-MDR, carrying blaIMP-45 and armA, from a multidrug-resistant (MDR) Pseudomonas putida isolate from the urine of a cerebral infarction patient in China. The backbone of pSY153-MDR was closely related to Pseudomonas plasmids p12969-DIM, pOZ176, pBM413, pTTS12, and pRBL16, and could not be assigned to any of the known incompatibility groups. The accessory modules of pSY153-MDR were composed of 10 individual insertion sequence elements and two different MDR regions, and differed dramatically from the above plasmids. Fifteen non-redundant resistance markers were identified to be involved in resistance to at least eight distinct classes of antibiotics. All of these resistance genes were associated with mobile elements, and were embedded within the two MDR regions. blaIMP-45 and armA coexisted in a Tn1403-Tn1548 region, which was generated from homologous recombination of Tn1403- and Tn1548-like transposons. The second copy of armA was a component of the ISCR28-armA-?ISCR28 structure, representing a novel armA vehicle. This vehicle was located within In48, which was related to In363 and In1058. Data presented here provide a deeper insight into the evolutionary history of SY153, especially in regard to how it became extensively drug-resistant.


July 7, 2019  |  

Complete genome sequences of two plant-associated Pseudomonas putida isolates with increased heavy-metal tolerance.

We report here the complete genome sequences of two Pseudomonas putida isolates recovered from surfac e-sterilized roots of Sida hermaphrodita The two isolates were characterized by an increased tolerance to zinc, cadmium, and lead. Furthermore, the strains showed typical plant growth-promoting properties, such as the production of indole acetic acid, cellulolytic enzymes, and siderophores. Copyright © 2017 Nesme et al.


July 7, 2019  |  

Comparative genomics reveals specific genetic architectures in nicotine metabolism of Pseudomonassp. JY-Q.

Microbial degradation of nicotine is an important process to control nicotine residues in the aqueous environment. In this study, a high active nicotine degradation strain namedPseudomonassp. JY-Q was isolated from tobacco waste extract (TWE). This strain could completely degrade 5.0 g l-1nicotine in 24 h under optimal culture conditions, and it showed some tolerance even at higher concentrations (10.0 g l-1) of nicotine. The complete genome of JY-Q was sequenced to understand the mechanism by which JY-Q could degrade nicotine and tolerate such high nicotine concentrations. Comparative genomic analysis indicated that JY-Q degrades nicotine through putative novel mechanisms. Two candidate gene cluster duplications located separately at distant loci were predicted to be responsible for nicotine degradation. These two nicotine (Nic) degradation-related loci (AA098_21325-AA098_21340, AA098_03885-AA098_03900) exhibit nearly completely consistent gene organization and component synteny. The nicotinic acid(NA)degradation gene cluster (AA098_17770-AA098_17790) andNic-like clusters were both predicted to be flanked by mobile genetic elements (MGE). Furthermore, we analyzed the regions of genomic plasticity (RGP) in the JY-Q strain and found a dynamic genome carrying a type VI secretion system (T6SS) that promotes nicotine metabolism and tolerance based on transcriptomics and usedin silicomethods to identify the T6SS effector protein. Thus, a novel nicotine degradation mechanism was elucidated forPseudomonassp. JY-Q, suggesting its potential application in the bioremediation of nicotine-contaminated environments, such as TWEs.


July 7, 2019  |  

Genomic characterization of a local epidemic Pseudomonas aeruginosa reveals specific features of the widespread clone ST395.

Pseudomonas aeruginosa is a ubiquitous opportunistic pathogen with several clones being frequently associated with outbreaks in hospital settings. ST395 is among these so-called ‘international’ clones. We aimed here to define the biological features that could have helped the implantation and spread of the clone ST395 in hospital settings. The complete genome of a multidrug resistant index isolate (DHS01) of a large hospital outbreak was analysed. We identified DHS01-specific genetic elements, among which were identified those shared with a panel of six independent ST395 isolates responsible for outbreaks in other hospitals. DHS01 has the fifth largest chromosome of the species (7.1 Mbp), with most of its 1555 accessory genes borne by either genomic islands (GIs,n=48) or integrative and conjugative elements (ICEs,n=5). DHS01 is multidrug resistant mostly due to chromosomal mutations. It displayed signatures of adaptation to chronic infection in part due to the loss of a 131 kbp chromosomal fragment. Four GIs were specific to the clone ST395 and contained genes involved in metabolism (GI-4), in virulence (GI-6) and in resistance to copper (GI-7). GI-7 harboured an array of six copper transporters and was shared with non-pathogenicPseudomonassp. retrieved from copper-contaminated environments. Copper resistance was confirmed phenotypically in all other ST395 isolates and possibly accounted for the spreading capability of the clone in hospital outbreaks, where water networks have been incriminated. This suggests that genes transferred from copper-polluted environments may have favoured the implantation and spread of the international cloneP. aeruginosaST395 in hospital settings.


July 7, 2019  |  

Comparative whole-genomic analysis of an ancient L2 lineage Mycobacterium novel phylogenetic clade and common genetic determinants of hypervirulent strains.

Background: Development of improved therapeutics against tuberculosis (TB) is hindered by an inadequate understanding of the relationship between disease severity and genetic diversity of its causative agent, Mycobacterium tuberculosis. We previously isolated a hypervirulent M. tuberculosis strain H112 from an HIV-negative patient with an aggressive disease progression from pulmonary TB to tuberculous meningitis—the most severe manifestation of tuberculosis. Human macrophage challenge experiment demonstrated that the strain H112 exhibited significantly better intracellular survivability and induced lower level of TNF-a than the reference virulent strain H37Rv and other 123 clinical isolates. Aim: The present study aimed to identify the potential genetic determinants of mycobacterial virulence that were common to strain H112 and hypervirulent M. tuberculosis strains of the same phylogenetic clade isolated in other global regions. Methods: A low-virulent M. tuberculosis strain H54 which belonged to the same phylogenetic lineage (L2) as strain H112 was selected from a collection of 115 clinical isolates. Both H112 and H54 were whole-genome-sequenced using PacBio sequencing technology. A comparative genomics approach was adopted to identify mutations present in strain H112 but absent in strain H54. Subsequently, an extensive phylogenetic analysis was conducted by including all publically available M. tuberculosis genomes. Single-nucleotide-polymorphisms (SNPs) and structural variations (SVs) common to hypervirulent strains in the global collection of genomes were considered as potential genetic determinants of hypervirulence. Results: Sequencing data revealed that both H112 and H54 were identified as members of the same sub-lineage L2.2.1. After excluding the lineage-related mutations shared between H112 and H54, we analyzed the phylogenetic relatedness of H112 with global collection of M. tuberculosis genomes (n = 4,338), and identified a novel phylogenetic clade in which four hypervirulent strains isolated from geographically diverse regions were clustered together. All hypervirulent strains in the clade shared 12 SNPs and 5 SVs with H112, including those affecting key virulence-associated loci, notably, a deleterious SNP (rv0178 p. D150E) within mce1 operon and an intergenic deletion (854259_ 854261delCC) in close-proximity to phoP. Conclusion: The present study identified common genetic factors in a novel phylogenetic clade of hypervirulent M. tuberculosis. The causative role of these mutations in mycobacterial virulence should be validated in future study.


July 7, 2019  |  

Complete genome of Pseudomonas sp. strain L10.10, a psychrotolerant biofertilizer that could promote plant growth.

Pseudomonas sp. strain L10.10 (=DSM 101070) is a psychrotolerant bacterium which was isolated from Lagoon Island, Antarctica. Analysis of its complete genome sequence indicates its possible role as a plant-growth promoting bacterium, including nitrogen-fixing ability and indole acetic acid (IAA)-producing trait, with additional suggestion of plant disease prevention attributes via hydrogen cyanide production. Copyright © 2016 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Colistin-Nonsusceptible Pseudomonas aeruginosa Sequence Type 654 with blaNDM-1 Arrives in North America.

This study describes 3 different blaNDM-1 genetic platforms in 3 different species obtained from the same patient who was directly transferred to an institution in Calgary, Alberta, Canada, following a prolonged hospital stay in India. The blaNDM-1 in the Escherichia coli isolate was located on a 176-kb IncA/C plasmid contained within an ISCR1 region. The blaNDM-1 in the Providencia rettgeri isolate was located on a 117-kb IncT plasmid contained within Tn3000, while the blaNDM-1 in the Pseudomonas aeruginosa isolate was located on the chromosome within an ISCR3 region. This report highlights the plasticity of the genetic regions and environments associated with blaNDM-1. To the best of our knowledge, this is the first report of P. aeruginosa with blaNDM-1 identified in North America and the first report of blaOXA-181 in P. rettgeri. The P. aeruginosa isolate belonged to the international high-risk sequence type 654 clone and was nonsusceptible to colistin. This case emphasizes the need for the use of appropriate infection prevention and control measures and vigilant screening for carbapenem-resistant Gram-negative bacteria in patients with a history of travel to areas of endemicity, such as the Indian subcontinent. Copyright © 2016, American Society for Microbiology. All Rights Reserved.


July 7, 2019  |  

Complete genome sequence of a bacterium Pseudomonas fragi P121, a strain with degradation of toxic compounds.

A newly isolated strain P121 was identified as Pseudomonas fragi. The complete genome sequence of P.fragi P121 was carried out using the PacBio RS? platform. The genome contains a circular chromosome with 5,101,809bp. The genome sequence suggests that the P121 exhibited the ability of degradation of toxic compounds. Genome sequencing information provides the genetic basis for the analysis of toxic compounds and the mechanism of extreme environmental adaptation of the strain. Copyright © 2016. Published by Elsevier B.V.


July 7, 2019  |  

A carbapenem-resistant Pseudomonas aeruginosa isolate harboring two copies of blaIMP-34 encoding a metallo-ß-lactamase.

A carbapenem-resistant strain of Pseudomonas aeruginosa, NCGM1984, was isolated in 2012 from a hospitalized patient in Japan. Immunochromatographic assay showed that the isolate was positive for IMP-type metallo-ß-lactamase. Complete genome sequencing revealed that NCGM1984 harbored two copies of blaIMP-34, located at different sites on the chromosome. Each blaIMP-34 was present in the same structures of the class 1 integrons, tnpA(ISPa7)-intI1-qacG-blaIMP-34-aac(6′)-Ib-qacEdelta1-sul1-orf5-tniBdelta-tniA. The isolate belonged to multilocus sequence typing ST235, one of the international high-risk clones. IMP-34, with an amino acid substitution (Glu126Gly) compared with IMP-1, hydrolyzed all ß-lactamases tested except aztreonam, and its catalytic activities were similar to IMP-1. This is the first report of a clinical isolate of an IMP-34-producing P. aeruginosa harboring two copies of blaIMP-34 on its chromosome.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.