fbpx
X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Sunday, July 7, 2019

Genome sequence and analysis of the Japanese morning glory Ipomoea nil.

Ipomoea is the largest genus in the family Convolvulaceae. Ipomoea nil (Japanese morning glory) has been utilized as a model plant to study the genetic basis of floricultural traits, with over 1,500 mutant lines. In the present study, we have utilized second- and third-generation-sequencing platforms, and have reported a draft genome of I. nil with a scaffold N50 of 2.88?Mb (contig N50 of 1.87?Mb), covering 98% of the 750?Mb genome. Scaffolds covering 91.42% of the assembly are anchored to 15 pseudo-chromosomes. The draft genome has enabled the identification and cataloguing of the Tpn1 family transposons, known as the major mutagen…

Read More »

Sunday, July 7, 2019

Towards integration of population and comparative genomics in forest trees.

The past decade saw the initiation of an ongoing revolution in sequencing technologies that is transforming all fields of biology. This has been driven by the advent and widespread availability of high-throughput, massively parallel short-read sequencing (MPS) platforms. These technologies have enabled previously unimaginable studies, including draft assemblies of the massive genomes of coniferous species and population-scale resequencing. Transcriptomics studies have likewise been transformed, with RNA-sequencing enabling studies in nonmodel organisms, the discovery of previously unannotated genes (novel transcripts), entirely new classes of RNAs and previously unknown regulatory mechanisms. Here we touch upon current developments in the areas of genome…

Read More »

Sunday, July 7, 2019

The mechanisms whereby the green alga Chlorella ohadii, isolated from desert soil crust, exhibits unparalleled photodamage resistance.

Excess illumination damages the photosynthetic apparatus with severe implications with regard to plant productivity. Unlike model organisms, the growth of Chlorella ohadii, isolated from desert soil crust, remains unchanged and photosynthetic O2 evolution increases, even when exposed to irradiation twice that of maximal sunlight. Spectroscopic, biochemical and molecular approaches were applied to uncover the mechanisms involved. D1 protein in photosystem II (PSII) is barely degraded, even when exposed to antibiotics that prevent its replenishment. Measurements of various PSII parameters indicate that this complex functions differently from that in model organisms and suggest that C. ohadii activates a nonradiative electron recombination route…

Read More »

Sunday, July 7, 2019

Assembly of the draft genome of buckwheat and its applications in identifying agronomically useful genes.

Buckwheat (Fagopyrum esculentum Moench; 2n = 2x = 16) is a nutritionally dense annual crop widely grown in temperate zones. To accelerate molecular breeding programmes of this important crop, we generated a draft assembly of the buckwheat genome using short reads obtained by next-generation sequencing (NGS), and constructed the Buckwheat Genome DataBase. After assembling short reads, we determined 387,594 scaffolds as the draft genome sequence (FES_r1.0). The total length of FES_r1.0 was 1,177,687,305 bp, and the N50 of the scaffolds was 25,109 bp. Gene prediction analysis revealed 286,768 coding sequences (CDSs; FES_r1.0_cds) including those related to transposable elements. The total…

Read More »

Sunday, July 7, 2019

Exploiting next-generation sequencing to solve the haplotyping puzzle in polyploids: a simulation study.

Haplotypes are the units of inheritance in an organism, and many genetic analyses depend on their precise determination. Methods for haplotyping single individuals use the phasing information available in next-generation sequencing reads, by matching overlapping single-nucleotide polymorphisms while penalizing post hoc nucleotide corrections made. Haplotyping diploids is relatively easy, but the complexity of the problem increases drastically for polyploid genomes, which are found in both model organisms and in economically relevant plant and animal species. Although a number of tools are available for haplotyping polyploids, the effects of the genomic makeup and the sequencing strategy followed on the accuracy of…

Read More »

Sunday, July 7, 2019

Current advances in genome sequencing of common wheat and its ancestral species

Common wheat is an important and widely cultivated food crop throughout the world. Much progress has been made in regard to wheat genome sequencing in the last decade. Starting from the sequencing of single chromosomes/chromosome arms whole genome sequences of common wheat and its diploid and tetraploid ancestors have been decoded along with the development of sequencing and assembling technologies. In this review, we give a brief summary on international progress in wheat genome sequencing, and mainly focus on reviewing the effort and contributions made by Chinese scientists.

Read More »

Sunday, July 7, 2019

A comprehensive model of DNA fragmentation for the preservation of High Molecular Weight DNA

During DNA extraction the DNA molecule undergoes physical and chemical shearing, causing the DNA to fragment into shorter and shorter pieces. Under common laboratory conditions this fragmentation yields DNA fragments of 5-35 kilobases (kb) in length. This fragment length is more than sufficient for DNA sequencing using short-read technologies which generate reads 50-600 bp in length, but insufficient for long-read sequencing and linked reads where fragment lengths of more than 40 kb may be desirable. This study provides a theoretical framework for quality management to ensure access to high molecular weight DNA in samples. Shearing can be divided into physical…

Read More »

Sunday, July 7, 2019

Identification and expression analysis of wheat TaGF14 genes.

The 14-3-3 gene family members play key roles in various cellular processes. However, little is known about the numbers and roles of 14-3-3 genes in wheat. The aims of this study were to identify TaGF14 numbers in wheat by searching its whole genome through blast, to study the phylogenetic relationships with other plant species and to discuss the functions of TaGF14s. The results showed that common wheat harbored 20 TaGF14 genes, located on wheat chromosome groups 2, 3, 4, and 7. Out of them, eighteen TaGF14s are non-e proteins, and two wheat TaGF14 genes, TaGF14i and TaGF14f, are e proteins.…

Read More »

Sunday, July 7, 2019

Oryza rufipogon Griff.

Oryza rufipogon, the progenitor of present-day cultivated rice, O. sativa, is one of the most studied wild species of rice. It is a perennial plant commonly found in a marsh or aquatic habitats of eastern and southern Asia. It has partial outcrossing behavior and is photoperiod sensitive. The flowering time usually ranges between September and November. It has been and is being exploited as a source of valuable genes and QTLs for yield components as well as resistance against biotic and abiotic stresses. A number of populations like chromosome segment substitution lines, backcross inbred lines, near-isogenic lines, and recombinant inbred…

Read More »

Sunday, July 7, 2019

Oryza meridionalis NQ Ng

Oryza meridionalis is an AA genome species found in Northern Australia. Phylogenetic analysis places this as the most distant of the AA genome species from domesticated rice (Oryza sativa). This makes it a key genetic resource for rice improvement. A draft nuclear genome sequence is available, and also the chloroplast genome has been sequenced from many genotypes. The high amylose starch content in these taxa may be useful for developing new rice grain characteristics. Here we have reviewed the all the research advancements that are made till today on this species.

Read More »

Sunday, July 7, 2019

Oryza glaberrima Steud.

Oryza glaberrima is the African cultivated rice species, domesticated from its wild ancestor by farmers living in Inland Delta of Niger River. Several studies indicated that it has extremely narrow genetic diversity compared to both its wild progenitor, Oryza barthii and the Asian rice, Oryza sativa which can mainly be attributed to a severe domestication bottleneck. Despite its scarcity in farmer’s field due to its low yield potential, high shattering and lodging susceptibility, O. glaberrima is of great value not only to Africa but also globally. Perhaps its greatest contribution to regional and global food security is as a source…

Read More »

Sunday, July 7, 2019

Natural rubber and the Russian dandelion genome

The world needs rubber. Rubber is crucial for the tires on the cars, trucks and airplanes that propel modern transportation. It is equally important for daily tasks: latex gloves in the lab, balloons in angioplasty and wetsuits that warm a cold dip in the ocean. Rubber can be made synthetically from petroleum derivatives, but synthetic rubber is not as strong as rubber iso- lated from plants. The principal plant source for natural rubber (NR) is the sap of the Par´ a tree (Hevea brasiliensis), which is grown throughout Southeast Asia. Unfortunately, the produc- tion capacity of the Par´ a tree…

Read More »

Sunday, July 7, 2019

Rooting for new sources of natural rubber

Global production of natural rubber (NR) depends overwhelmingly on the Pará rubber tree (Hevea brasiliensis), a slow-growing tropical tree that is threatened by low genetic diversity and high susceptibility to fungal blight [1]. Alternative rubber sources have been sought for more than a century, but very few species have been found that produce rubber of comparable quality [2]. One of the brightest candidates, first noticed by breeders in Soviet-era Russia, is Taraxacum kok-saghyz (commonly called TKS). This close relative of the common weedy dandelion has a number of attractive features. As a native of central Asia, TKS can be cultivated…

Read More »

Sunday, July 7, 2019

Sustaining global agriculture through rapid detection and deployment of genetic resistance to deadly crop diseases.

Contents Summary 45 I. Introduction 45 II. Targeted chromosome-based cloning via long-range assembly (TACCA) 46 III. Resistance gene cloning through mutational mapping (MutMap) 47 IV. Cloning through mutant chromosome sequencing (MutChromSeq) 47 V. Rapid cloning through resistance gene enrichment and sequencing (RenSeq) 49 VI. Cloning resistance genes through transcriptome profiling (RNAseq) 49 VII. Resistance gene deployment strategies 49 VIII. Conclusions 50 Acknowledgements 50 References 50 SUMMARY: Genetically encoded resistance is a major component of crop disease management. Historically, gene loci conferring resistance to pathogens have been identified through classical genetic methods. In recent years, accelerated gene cloning strategies have become…

Read More »

1 32 33 34 35 36

Subscribe for blog updates:

Archives

Search

Categories