Menu
July 7, 2019  |  

Next-generation sequencing of Haematococcus lacustris reveals an extremely large 1.35-megabase chloroplast genome.

Haematococcus lacustris is an industrially relevant microalga that is used for the production of the carotenoid astaxanthin. Here, we report the use of PacBio long-read sequencing to assemble the chloroplast genome of H. lacustris strain UTEX:2505. At 1.35?Mb, this is the largest assembled chloroplast of any plant or alga known to date. Copyright © 2018 Bauman et al.


July 7, 2019  |  

Identification of repetitive DNA sequences in the Chrysanthemum boreale genome

We previously revealed that the Chrysanthemum boreale genome is highly repetitive; however, the types and nucleotide sequences of repetitive DNA in this diploid wild chrysanthemum are not known. Here, we characterized repetitive DNA sequences in the C. boreale genome by analysing genomic sequences obtained by Illumina sequencing and confirmed their repetitive nature by conducting fluorescence in situ hybridization (FISH) analyses. Annotation of the obtained DNA sequences revealed that microsatellite-containing genomic sequences exhibited similarity with genomic sequences in Chrysanthemum morifolium, indicating sequence conservation of repetitive DNA sequences between the two Chrysanthemum species. Two superfamilies of repetitive DNA, Copia and Gypsy, belonging to the long-terminal repeat (LTR) class of retrotransposons, are abundant in the C. boreale genome. We propose that Copia and Gypsy retroelements contribute to the current genome architecture of C. boreale. Whole genome sequencing, which is currently in progress, will reveal the extent to which these repetitive DNA sequences contribute.


July 7, 2019  |  

The case for not masking away repetitive DNA

In the course of analyzing whole-genome data, it is common practice to mask or filter out repetitive regions of a genome, such as transposable elements and endogenous retroviruses, in order to focus only on genes and thus simplify the results. This Commentary is a plea from one member of the Mobile DNA community to all gene-centric researchers: please do not ignore the repetitive fraction of the genome. Please stop narrowing your findings by only analyzing a minority of the genome, and instead broaden your analyses to include the rich biology of repetitive and mobile DNA. In this article, I present four arguments supporting a case for retaining repetitive DNA in your genome-wide analysis.


July 7, 2019  |  

Optimise wheat A-genome.

The wild einkorn wheat Triticum urartu (Tu) is the A-genome progenitor of tetraploid (AABB) and hexaploid (AABBDD) wheat. A draft genome of Tu was published in 2013, but a better reference sequence is urgently needed by scientists and breeders. Hong-Qing Ling, from the Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and colleagues have now completed a high-quality Tu genome using multiple methods.


July 7, 2019  |  

TriPoly: haplotype estimation for polyploids using sequencing data of related individuals.

Knowledge of haplotypes, i.e. phased and ordered marker alleles on a chromosome, is essential to answer many questions in genetics and genomics. By generating short pieces of DNA sequence, high-throughput modern sequencing technologies make estimation of haplotypes possible for single individuals. In polyploids, however, haplotype estimation methods usually require deep coverage to achieve sufficient accuracy. This often renders sequencing-based approaches too costly to be applied to large populations needed in studies of Quantitative Trait Loci.We propose a novel haplotype estimation method for polyploids, TriPoly, that combines sequencing data with Mendelian inheritance rules to infer haplotypes in parent-offspring trios. Using realistic simulations of both short and long-read sequencing data for banana (Musa acuminata) and potato (Solanum tuberosum) trios, we show that TriPoly yields more accurate progeny haplotypes at low coverages compared to existing methods that work on single individuals. We also apply TriPoly to phase Single Nucleotide Polymorphisms on chromosome 5 for a family of tetraploid potato with 2 parents and 37 offspring sequenced with an RNA capture approach. We show that TriPoly haplotype estimates differ from those of the other methods mainly in regions with imperfect sequencing or mapping difficulties, as it does not rely solely on sequence reads and aims to avoid phasings that are not likely to have been passed from the parents to the offspring.TriPoly has been implemented in Python 3.5.2 (also compatible with Python 2.7.3 and higher) and can be freely downloaded at https://github.com/EhsanMotazedi/TriPoly.Supplementary data are available at Bioinformatics online.


July 7, 2019  |  

Fast-SG: an alignment-free algorithm for hybrid assembly.

Long-read sequencing technologies are the ultimate solution for genome repeats, allowing near reference-level reconstructions of large genomes. However, long-read de novo assembly pipelines are computationally intense and require a considerable amount of coverage, thereby hindering their broad application to the assembly of large genomes. Alternatively, hybrid assembly methods that combine short- and long-read sequencing technologies can reduce the time and cost required to produce de novo assemblies of large genomes.Here, we propose a new method, called Fast-SG, that uses a new ultrafast alignment-free algorithm specifically designed for constructing a scaffolding graph using light-weight data structures. Fast-SG can construct the graph from either short or long reads. This allows the reuse of efficient algorithms designed for short-read data and permits the definition of novel modular hybrid assembly pipelines. Using comprehensive standard datasets and benchmarks, we show how Fast-SG outperforms the state-of-the-art short-read aligners when building the scaffoldinggraph and can be used to extract linking information from either raw or error-corrected long reads. We also show how a hybrid assembly approach using Fast-SG with shallow long-read coverage (5X) and moderate computational resources can produce long-range and accurate reconstructions of the genomes of Arabidopsis thaliana (Ler-0) and human (NA12878).Fast-SG opens a door to achieve accurate hybrid long-range reconstructions of large genomes with low effort, high portability, and low cost.


July 7, 2019  |  

Genome size estimation of Chinese cultured artemisia annua L.

Almost all of antimalarial artemisinin is extracted from the traditional Chinese medicinal plant Artemisia annua L. However, under the condition of insufficient genomic in- formation and unresolved genetic backgrounds, regulatory mechanism of artemisinin biosynthetic pathway has not yet been clear. The genome size of genuine A. annua plants is an especially important and fundamental parameter, which helpful for further insight into genomic studies of ar- temisinin biosynthesis and improvement. In current study, all those genome sizes of A. annua samples collected with Barcoding identification were evaluated to be 1.38-1.49 Gb by Flow Cytometry (FCM) with Nipponbare as the bench- mark calibration standard and soybean and maize as two internal standards individually and simultaneously. The ge- nome estimation of seven A. annua strains came from five China provinces (Shandong, Hunan, Chongqing, Sichuan, and Hainan) with a low coefficient of variation (CV, = 2.96%) wasrelative accurate, 12.87% (220 Mb) less than previous reports about a foreign A. annuaspecies with a single con- trol. It facilitated the schedule of A. annua whole genome sequencing project, optimization of assembly methods and insight into its subsequent genetics and evolution.


July 7, 2019  |  

Genome-wide analysis of the invertase gene family from maize.

The recent release of the maize genome (AGPv4) contains annotation errors of invertase genes and therefore the enzymes are bestly curated manually at the protein level in a comprehensible fashion The synthesis, transport and degradation of sucrose are determining factors for biomass allocation and yield of crop plants. Invertase (INV) is a key enzyme of carbon metabolism in both source and sink tissues. Current releases of the maize genome correctly annotates only two vacuolar invertases (ivr1 and ivr2) and four cell wall invertases (incw1, incw2 (mn1), incw3, and incw4). Our comprehensive survey identified 21 INV isogenes for which we propose a standard nomenclature grouped phylogenetically by amino acid similarity: three vacuolar (INVVR), eight cell wall (INVCW), and ten alkaline/neutral (INVAN) isogenes which form separate dendogram branches due to distinct molecular features. The acidic enzymes were curated for the presence of the DPN tripeptide which is coded by one of the smallest exons reported in plants. Particular attention was placed on the molecular role of INV in vascular tissues such as the nodes, internodes, leaf sheath, husk leaves and roots. We report the expression profile of most members of the maize INV family in nine tissues in two developmental stages, R1 and R3. INVCW7, INVVR2, INVAN8, INVAN9, INVAN10, and INVAN3 displayed the highest absolute expressions in most tissues. INVVR3, INVCW5, INVCW8, and INVAN1 showed low mRNA levels. Expressions of most INVs were repressed from stage R1 to R3, except for INVCW7 which increased significantly in all tissues after flowering. The mRNA levels of INVCW7 in the vegetative stem correlated with a higher transport rate of assimilates from leaves to the cob which led to starch accumulation and growth of the female reproductive organs.


July 7, 2019  |  

Omics in weed science: A perspective from genomics, transcriptomics, and metabolomics approaches

Modern high-throughput molecular and analytical tools offer exciting opportunities to gain a mechanistic understanding of unique traits of weeds. During the past decade, tremendous progress has been made within the weed science discipline using genomic techniques to gain deeper insights into weedy traits such as invasiveness, hybridization, and herbicide resistance. Though the adoption of newer “omics” techniques such as proteomics, metabolomics, and physionomics has been slow, applications of these omics platforms to study plants, especially agriculturally important crops and weeds, have been increasing over the years. In weed science, these platforms are now used more frequently to understand mechanisms of herbicide resistance, weed resistance evolution, and crop–weed interactions. Use of these techniques could help weed scientists to further reduce the knowledge gaps in understanding weedy traits. Although these techniques can provide robust insights about the molecular functioning of plants, employing a single omics platform can rarely elucidate the gene-level regulation and the associated real-time expression of weedy traits due to the complex and overlapping nature of biological interactions. Therefore, it is desirable to integrate the different omics technologies to give a better understanding of molecular functioning of biological systems. This multidimensional integrated approach can therefore offer new avenues for better understanding of questions of interest to weed scientists. This review offers a retrospective and prospective examination of omics platforms employed to investigate weed physiology and novel approaches and new technologies that can provide holistic and knowledge-based weed management strategies for future.


July 7, 2019  |  

Identification of woodland strawberry gene coexpression networks

What we think of as a strawberry is botanically not a berry or even a fruit, but rather multiple fruits (achenes that contain the seeds) on the outside of a swollen receptacle. This technicality aside, strawberries are both economically important and a useful system in which to study seed-fruit communication. While cultivated strawberries have a complex octoploid genome, one of their likely progenitors, the woodland strawberry (Fragaria vesca; Fig. 1), is a rapidly growing model system for the Rosaceae family due to its short generation time and capacity to be transformed. A draft of the woodland strawberry diploid genome sequence was released in 2011 (Shulaev et al., 2011), and the recent publication of a high-quality genome based on PacBio sequencing has added almost 1,500 genes to the annotation (Edger et al., 2018). Genetic and epigenetic resources have also been developed for this species (Xu et al., 2016; Hilmarsson et al., 2017).


July 7, 2019  |  

Genomic insights into date palm origins.

With the development of next-generation sequencing technology, the amount of date palm (Phoenix dactylifera L.) genomic data has grown rapidly and yielded new insights into this species and its origins. Here, we review advances in understanding of the evolutionary history of the date palm, with a particular emphasis on what has been learned from the analysis of genomic data. We first record current genomic resources available for date palm including genome assemblies and resequencing data. We discuss new insights into its domestication and diversification history based on these improved genomic resources. We further report recent discoveries such as the existence of wild ancestral populations in remote locations of Oman and high differentiation between African and Middle Eastern populations. While genomic data are consistent with the view that domestication took place in the Gulf region, they suggest that the process was more complex involving multiple gene pools and possibly a secondary domestication. Many questions remain unanswered, especially regarding the genetic architecture of domestication and diversification. We provide a road map to future studies that will further clarify the domestication history of this iconic crop.


July 7, 2019  |  

Genome-wide characterization and phylogenetic analysis of GSK gene family in three species of cotton: evidence for a role of some GSKs in fiber development and responses to stress

Background: The glycogen synthase kinase 3/shaggy kinase (GSK3) is a serine/threonine kinase with important roles in animals. Although GSK3 genes have been studied for more than 30years, plant GSK genes have been studied only since the last decade. Previous research has confirmed that plant GSK genes are involved in diverse processes, including floral development, brassinosteroid signaling, and responses to abiotic stresses. Result: In this study, 20, 15 (including 5 different transcripts) and 10 GSK genes were identified in G. hirsutum, G. raimondii and G. arboreum, respectively. A total of 65 genes from Arabidopsis, rice, and cotton were classified into 4 clades. High similarities were found in GSK3 protein sequences, conserved motifs, and gene structures, as well as good concordance in gene pairwise comparisons (G. hirsutum vs. G. arboreum, G. hirsutum vs. G. raimondii, and G. arboreum vs. G. raimondii) were observed. Whole genome duplication (WGD) within At and Dt sub-genomes has been central to the expansion of the GSK gene family. Furthermore, GhSK genes showed diverse expression patterns in various tissues. Additionally, the expression profiles of GhSKs under different stress treatments demonstrated that many are stress-responsive genes. However, none were induced by brassinolide treatment. Finally, nine co-expression sub- networks were observed for GhSKs and the functional annotations of these genes suggested that some GhSKs might be involved in cotton fiber development. Conclusion: In this present work, we identified 45 GSK genes from three cotton species, which were divided into four clades. The gene features, muti-alignment, conversed motifs, and syntenic blocks indicate that they have been highly conserved during evolution. Whole genome duplication was determined to be the dominant factor for GSK gene family expansion. The analysis of co-expressed sub-networks and tissue-specific expression profiles suggested functions of GhSKs during fiber development. Moreover, their different responses to various abiotic stresses indicated great functional diversity amongst the GhSKs. Briefly, data presented herein may serve as the basis for future functional studies of GhSKs.


July 7, 2019  |  

Pilot satellitome analysis of the model plant, Physcomitrellapatens, revealed a transcribed and high-copy IGS related tandem repeat.

Satellite DNA (satDNA) constitutes a substantial part of eukaryotic genomes. In the last decade, it has been shown that satDNA is not an inert part of the genome and its function extends beyond the nuclear membrane. However, the number of model plant species suitable for studying the novel horizons of satDNA functionality is low. Here, we explored the satellitome of the model “basal” plant, Physcomitrellapatens (Hedwig, 1801) Bruch & Schimper, 1849 (moss), which has a number of advantages for deep functional and evolutionary research. Using a newly developed pyTanFinder pipeline (https://github.com/Kirovez/pyTanFinder) coupled with fluorescence in situ hybridization (FISH), we identified five high copy number tandem repeats (TRs) occupying a long DNA array in the moss genome. The nuclear organization study revealed that two TRs had distinct locations in the moss genome, concentrating in the heterochromatin and knob-rDNA like chromatin bodies. Further genomic, epigenetic and transcriptomic analysis showed that one TR, named PpNATR76, was located in the intergenic spacer (IGS) region and transcribed into long non-coding RNAs (lncRNAs). Several specific features of PpNATR76 lncRNAs make them very similar with the recently discovered human lncRNAs, raising a number of questions for future studies. This work provides new resources for functional studies of satellitome in plants using the model organism P.patens, and describes a list of tandem repeats for further analysis.


July 7, 2019  |  

Alignment-free genome comparison enables accurate geographic sourcing of white oak DNA.

The application of genomic data and bioinformatics for the identification of restricted or illegally-sourced natural products is urgently needed. The taxonomic identity and geographic provenance of raw and processed materials have implications in sustainable-use commercial practices, and relevance to the enforcement of laws that regulate or restrict illegally harvested materials, such as timber. Improvements in genomics make it possible to capture and sequence partial-to-complete genomes from challenging tissues, such as wood and wood products.In this paper, we report the success of an alignment-free genome comparison method, [Formula: see text] that differentiates different geographic sources of white oak (Quercus) species with a high level of accuracy with very small amount of genomic data. The method is robust to sequencing errors, different sequencing laboratories and sequencing platforms.This method offers an approach based on genome-scale data, rather than panels of pre-selected markers for specific taxa. The method provides a generalizable platform for the identification and sourcing of materials using a unified next generation sequencing and analysis framework.


July 7, 2019  |  

Hardwood tree genomics: Unlocking woody plant biology.

Woody perennial angiosperms (i.e., hardwood trees) are polyphyletic in origin and occur in most angiosperm orders. Despite their independent origins, hardwoods have shared physiological, anatomical, and life history traits distinct from their herbaceous relatives. New high-throughput DNA sequencing platforms have provided access to numerous woody plant genomes beyond the early reference genomes of Populus and Eucalyptus, references that now include willow and oak, with pecan and chestnut soon to follow. Genomic studies within these diverse and undomesticated species have successfully linked genes to ecological, physiological, and developmental traits directly. Moreover, comparative genomic approaches are providing insights into speciation events while large-scale DNA resequencing of native collections is identifying population-level genetic diversity responsible for variation in key woody plant biology across and within species. Current research is focused on developing genomic prediction models for breeding, defining speciation and local adaptation, detecting and characterizing somatic mutations, revealing the mechanisms of gender determination and flowering, and application of systems biology approaches to model complex regulatory networks underlying quantitative traits. Emerging technologies such as single-molecule, long-read sequencing is being employed as additional woody plant species, and genotypes within species, are sequenced, thus enabling a comparative (“evo-devo”) approach to understanding the unique biology of large woody plants. Resource availability, current genomic and genetic applications, new discoveries and predicted future developments are illustrated and discussed for poplar, eucalyptus, willow, oak, chestnut, and pecan.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.