X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
April 27, 2017

Complete genome sequence of the gamma-aminobutyric acid-producing strain Streptococcus thermophilus APC151.

Here is presented the whole-genome sequence of Streptococcus thermophilus APC151, isolated from a marine fish. This bacterium produces gamma-aminobutyric acid (GABA) in high yields and is biotechnologically suitable to produce naturally GABA-enriched biofunctional yogurt. Its complete genome comprises 2,097 genes and 1,839,134 nucleotides, with an average G+C content of 39.1%. Copyright © 2017 Linares et al.

Read More »

April 1, 2017

Complete genome sequence of Amycolatopsis orientalis CPCC200066, the producer of norvancomycin.

Amycolatopsis orientalis CPCC200066 is an actinomycete exploited commercially in China for the production of norvancomycin, an important glycopeptide antibiotic structurally close to the well-known vancomycin. The availability of the complete genome sequence of CPCC200066 would greatly strengthen our understanding of the regulation pattern of norvancomycin biosynthesis and ultimately improve its production, as well as potentiate discoveries of novel bioactive compounds. Here we report the complete genome sequence of A. orientalis CPCC200066, a circular chromosome consisting of 9,490,992bp. Forty putative secondary metabolite biosynthetic gene clusters, including norvancomycin, were predicted, covering 20.3% of the whole genome. To facilitate genetic manipulation of this…

Read More »

December 15, 2016

High-quality draft genome sequence of the actinobacterium Nocardia terpenica IFM 0406, producer of the immunosuppressant brasilicardins, using Illumina and PacBio technologies.

The bacterium Nocardia terpenica IFM 0406 is known as the producer of the immunosuppressant brasilicardin A. Here, we report the completely sequenced genome of strain IFM 0406, which facilitates the heterologous expression of the brasilicardin biosynthetic gene cluster but also unveils the intriguing biosynthetic capacity of the strain to produce secondary metabolites. Copyright © 2016 Buchmann et al.

Read More »

June 6, 2016

Industrial Biotechnology Brochure: Fuel biotech discovery with confident characterization of microbes and their communities

Industrial microbiologists rely on comprehensive genomic information to identify and develop complex biological products. Single Molecule, Real-Time (SMRT) Sequencing delivers a more complete view of individual organisms and microbial communities, fueling research for modern pharmaceutical discovery, environmental remediation, chemical commodity production, and agriculture products.

Read More »

February 1, 2016

Genome mining of astaxanthin biosynthetic genes from Sphingomonas sp. ATCC 55669 for heterologous overproduction in Escherichia coli.

As a highly valued keto-carotenoid, astaxanthin is widely used in nutritional supplements and pharmaceuticals. Therefore, the demand for biosynthetic astaxanthin and improved efficiency of astaxanthin biosynthesis has driven the investigation of metabolic engineering of native astaxanthin producers and heterologous hosts. However, microbial resources for astaxanthin are limited. In this study, we found that the a-Proteobacterium Sphingomonas sp. ATCC 55669 could produce astaxanthin naturally. We used whole-genome sequencing to identify the astaxanthin biosynthetic pathway using a combined PacBio-Illumina approach. The putative astaxanthin biosynthetic pathway in Sphingomonas sp. ATCC 55669 was predicted. For further confirmation, a high-efficiency targeted engineering carotenoid synthesis platform…

Read More »

January 15, 2016

Genome analysis of the fruiting body forming myxobacterium Chondromyces crocatus reveals high potential for natural product biosynthesis.

Here we report the first complete genome sequence of the type strain of the myxobacterial genus Chondromyces - Chondromyces crocatus Cm c5. It presents one of the largest prokaryotic genomes featuring a single circular chromosome and no plasmids. Analysis revealed an enlarged set of tRNA genes, along with reduced pressure on preferred codon usage compared to other bacterial genomes. The large coding capacity and the plethora of encoded secondary metabolite biosynthetic gene clusters is in line with the capability of Cm c5 to produce an arsenal of anti-bacterial, anti-fungal and cytotoxic compounds. Known pathways of the ajudazol, chondramide, chondrochloren, crocacin,…

Read More »

Subscribe for blog updates:

Archives