July 7, 2019  |  

Genome mining of astaxanthin biosynthetic genes from Sphingomonas sp. ATCC 55669 for heterologous overproduction in Escherichia coli.

Authors: Ma, Tian and Zhou, Yuanjie and Li, Xiaowei and Zhu, Fayin and Cheng, Yongbo and Liu, Yi and Deng, Zixin and Liu, Tiangang

As a highly valued keto-carotenoid, astaxanthin is widely used in nutritional supplements and pharmaceuticals. Therefore, the demand for biosynthetic astaxanthin and improved efficiency of astaxanthin biosynthesis has driven the investigation of metabolic engineering of native astaxanthin producers and heterologous hosts. However, microbial resources for astaxanthin are limited. In this study, we found that the a-Proteobacterium Sphingomonas sp. ATCC 55669 could produce astaxanthin naturally. We used whole-genome sequencing to identify the astaxanthin biosynthetic pathway using a combined PacBio-Illumina approach. The putative astaxanthin biosynthetic pathway in Sphingomonas sp. ATCC 55669 was predicted. For further confirmation, a high-efficiency targeted engineering carotenoid synthesis platform was constructed in E. coli for identifying the functional roles of candidate genes. All genes involved in astaxanthin biosynthesis showed discrete distributions on the chromosome. Moreover, the overexpression of exogenous E. coli idi in Sphingomonas sp. ATCC 55669 increased astaxanthin production by 5.4-fold. This study described a new astaxanthin producer and provided more biosynthesis components for bioengineering of astaxanthin in the future. © 2015 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Journal: Biotechnology journal
DOI: 10.1002/biot.201400827
Year: 2016

Read publication

Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.