Menu
April 21, 2020

Genetic and biochemical characterization of FRI-3, a novel variant of the Ambler class A carbapenemase FRI-1.

To characterize a new variant of the FRI class A carbapenemase isolated from an MDR clinical Enterobacter cloacae isolate.A carbapenem-resistant E. cloacae was isolated from a rectal swab from a patient in an ICU in Southern Germany. Various phenotypic tests confirmed production of a putative class A carbapenemase. The new bla gene variant, blaFRI-3, and its genetic environment were characterized by WGS. Biochemical characterization was performed by heterologous expression in Escherichia coli TOP10 and by purification of the enzyme with subsequent determination of its kinetic parameters.PCR and sequencing carried out for different class A carbapenemase genes confirmed the presence of a novel variant of blaFRI-1. The novel variant was named FRI-3 and exhibited 91%, 96% and 92% amino acid identity to FRI-1, FRI-2 and FRI-4, respectively. E. coli TOP10 expressing blaFRI-3 showed increased resistance to almost all ß-lactams. Comparing the catalytic behaviour of FRI-3 and FRI-1, it was shown that FRI-3 had the same substrate spectrum, but basically hydrolysed ß-lactams less efficiently than FRI-1. WGS data revealed that blaFRI-3 was located on a 111?kb plasmid.The biochemical characterization of FRI-3 illustrates that even a few differences in the amino acid sequence can lead to altered catalytic activities of ß-lactamases belonging to the same family. © The Author(s) 2019. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For permissions, please email: journals.permissions@oup.com.


April 21, 2020

A prophage and two ICESa2603-family integrative and conjugative elements (ICEs) carrying optrA in Streptococcus suis.

To investigate the presence and transfer of the oxazolidinone/phenicol resistance gene optrA and identify the genetic elements involved in the horizontal transfer of the optrA gene in Streptococcus suis.A total of 237 S. suis isolates were screened for the presence of the optrA gene by PCR. Whole-genome DNA of three optrA-positive strains was completely sequenced using the Illumina MiSeq and Pacbio RSII platforms. MICs were determined by broth microdilution. Transferability of the optrA gene in S. suis was investigated by conjugation. The presence of circular intermediates was examined by inverse PCR.The optrA gene was present in 11.8% (28/237) of the S. suis strains. In three strains, the optrA gene was flanked by two copies of IS1216 elements in the same orientation, located either on a prophage or on ICESa2603-family integrative and conjugative elements (ICEs), including one tandem ICE. In one isolate, the optrA-carrying ICE transferred with a frequency of 2.1?×?10-8. After the transfer, the transconjugant displayed elevated MICs of the respective antimicrobial agents. Inverse PCRs revealed that circular intermediates of different sizes were formed in the three optrA-carrying strains, containing one copy of the IS1216E element and the optrA gene alone or in combination with other resistance genes.A prophage and two ICESa2603-family ICEs (including one tandem ICE) associated with the optrA gene were identified in S. suis. The association of the optrA gene with the IS1216E elements and its location on either a prophage or ICEs will aid its horizontal transfer. © The Author(s) 2019. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For permissions, please email: journals.permissions@oup.com.


April 21, 2020

Emergence of an Escherichia coli strain co-harbouring mcr-1 and blaNDM-9 from a urinary tract infection in Taiwan.

Multidrug-resistant bacteria have become a serious threat worldwide. In particular, the coexistence of carbapenemase genes and mcr-1 leaves few available treatment options. Here we report a multidrug-resistant Escherichia coli isolate harbouring both mcr-1 and blaNDM-9 from a patient with a urinary tract infection.Antimicrobial susceptibility and resistance genes of the E. coli isolate were characterised. Furthermore, the assembled genome sequences of mcr-1- and blaNDM-9-carrying plasmids were determined and comparative genetic analysis with closely related plasmids was carried out.Three contigs were assembled comprising the E. coli chromosome and two plasmids harbouring mcr-1 (p5CRE51-MCR-1) and blaNDM-9 (p5CRE51-NDM-9), respectively. Whole-genome sequencing revealed that the two antimicrobial resistance genes are located on individual plasmids.The emergence of coexistence of carbapenemase genes and mcr-1 in Enterobacteriaceae highlights a serious threat to antimicrobial therapy.Copyright © 2018 International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All rights reserved.


April 21, 2020

Comparative analysis of KPC-2-encoding chimera plasmids with multi-replicon IncR:IncpA1763-KPC:IncN1 or IncFIIpHN7A8:IncpA1763-KPC:IncN1.

IncR, IncFII, IncpA1763-KPC, and IncN1 plasmids have been increasingly found among Enterobacteriaceae species, but plasmids with hybrid structures derived from the above-mentioned incompatibility groups have not yet been described.Plasmids p721005-KPC, p504051-KPC, and pA3295-KPC were fully sequenced and compared with previously sequenced related plasmids pHN84KPC (IncR), pKPHS2 (IncFIIK), pKOX_NDM1 (IncFIIY), pHN7A8 (IncFIIpHN7A8), and R46 (IncN1).The backbone of p721005-KPC/p504051-KPC was a hybrid of the entire 10-kb IncR-type backbone from pHN84KPC, the entire 64.3-kb IncFIIK-type maintenance, and conjugal transfer regions from pKPHS2, a 15.5-kb IncFIIY-type maintenance region from pKOX_NDM1 and a 5.6-kb IncpA1763-KPC-type backbone region from pA1763-KPC, and it contained a primary IncR replicon and two auxiliary IncpA1763-KPC and IncN1 replicons. The backbone of pA3295-KPC was a hybrid of a 7.2-kb IncFIIpHN7A8-type backbone region from pHN7A8, the almost entire 33.3-kb IncN1-type maintenance and conjugal transfer regions highly similar to R46, a 26.2-kb IncFIIK-type maintenance regions from pKPHS2, the above 15.5-kb IncFIIY-type maintenance region, and the above 5.6-kb IncpA1763-KPC-type backbone region, and it contained a primary Inc-FIIpHN7A8 replicon and two auxiliary IncpA1763-KPC and IncN1 replicons. Each of p721005-KPC, p504051-KPC, and pA3295-KPC acquired a wealth of accessory modules, carrying a range of intact and residue mobile elements (such as insertion sequences, unit transposons, and integrons) and resistance markers (such as blaKPC, tetA, dfrA, and qnr).In each of p721005-KPC, p504051-KPC, and pA3295-KPC, multiple replicons in coordination with maintenance and conjugation regions of various origins would maintain a broad host range and a stable replication at a steady-state plasmid copy number.


April 21, 2020

Natural product drug discovery in the genomic era: realities, conjectures, misconceptions, and opportunities.

Natural product discovery from microorganisms provided important sources for antibiotics, anti-cancer agents, immune-modulators, anthelminthic agents, and insecticides during a span of 50 years starting in the 1940s, then became less productive because of rediscovery issues, low throughput, and lack of relevant new technologies to unveil less abundant or not easily detected drug-like natural products. In the early 2000s, it was observed from genome sequencing that Streptomyces species encode about ten times as many secondary metabolites as predicted from known secondary metabolomes. This gave rise to a new discovery approach-microbial genome mining. As the cost of genome sequencing dropped, the numbers of sequenced bacteria, fungi and archaea expanded dramatically, and bioinformatic methods were developed to rapidly scan whole genomes for the numbers, types, and novelty of secondary metabolite biosynthetic gene clusters. This methodology enabled the identification of microbial taxa gifted for the biosynthesis of drug-like secondary metabolites. As genome sequencing technology progressed, the realities relevant to drug discovery have emerged, the conjectures and misconceptions have been clarified, and opportunities to reinvigorate microbial drug discovery have crystallized. This perspective addresses these critical issues for drug discovery.


April 21, 2020

Highly flexible infection programs in a specialized wheat pathogen.

Many filamentous plant pathogens exhibit high levels of genomic variability, yet the impact of this variation on host-pathogen interactions is largely unknown. We have addressed host specialization in the wheat pathogen Zymoseptoria tritici. Our study builds on comparative analyses of infection and gene expression phenotypes of three isolates and reveals the extent to which genomic variation translates into phenotypic variation. The isolates exhibit genetic and genomic variation but are similarly virulent. By combining confocal microscopy, disease monitoring, staining of ROS, and comparative transcriptome analyses, we conducted a detailed comparison of the infection processes of these isolates in a susceptible wheat cultivar. We characterized four core infection stages: establishment, biotrophic growth, lifestyle transition, and necrotrophic growth and asexual reproduction that are shared by the three isolates. However, we demonstrate differentiated temporal and spatial infection development and significant differences in the expression profiles of the three isolates during the infection stages. More than 20% of the genes were differentially expressed and these genes were located significantly closer to transposable elements, suggesting an impact of epigenetic regulation. Further, differentially expressed genes were enriched in effector candidates suggesting that isolate-specific strategies for manipulating host defenses are present in Z. tritici. We demonstrate that individuals of a host-specialized pathogen have highly differentiated infection programs characterized by flexible infection development and functional redundancy. This illustrates how high genetic diversity in pathogen populations results in highly differentiated infection phenotypes, which fact needs to be acknowledged to understand host-pathogen interactions and pathogen evolution.


April 21, 2020

An efficient gene disruption system for the nematophagous fungus Purpureocillium lavendulum.

The fungus Purpureocillium lavendulum (formally Paecilomyces lilacinus) is a natural enemy of insects and plant-parasitic nematodes, and has been used as an important bio-control agent against agricultural pests all over the world. In order to understand the genetic mechanisms governing its biocontrol efficiency and other biological processes, an effective gene disruption system is needed. Here we report the development of an efficient system which integrates selective markers that differ from Purpureocillium lilacinum, a one-step construction method for gene knockout plasmids, and a ku80 knockout strain for efficient homologous recombination. With this system, we effectively disrupted the transcription factors in the central regulation pathway of sporulation and a serine protease which were contributed to nematode infection, demonstrating this system as an efficient gene disrupting system for further characterization of genes involved in the development and pathogenesis of this fungus. Copyright © 2019 British Mycological Society. Published by Elsevier Ltd. All rights reserved.


April 21, 2020

Retrospective whole-genome sequencing analysis distinguished PFGE and drug-resistance-matched retail meat and clinical Salmonella isolates.

Non-typhoidal Salmonella is a leading cause of outbreak and sporadic-associated foodborne illnesses in the United States. These infections have been associated with a range of foods, including retail meats. Traditionally, pulsed-field gel electrophoresis (PFGE) and antibiotic susceptibility testing (AST) have been used to facilitate public health investigations of Salmonella infections. However, whole-genome sequencing (WGS) has emerged as an alternative tool that can be routinely implemented. To assess its potential in enhancing integrated surveillance in Pennsylvania, USA, WGS was used to directly compare the genetic characteristics of 7 retail meat and 43 clinical historic Salmonella isolates, subdivided into 3 subsets based on PFGE and AST results, to retrospectively resolve their genetic relatedness and identify antimicrobial resistance (AMR) determinants. Single nucleotide polymorphism (SNP) analyses revealed that the retail meat isolates within S. Heidelberg, S. Typhimurium var. O5- subset 1 and S. Typhimurium var. O5- subset 2 were separated from each primary PFGE pattern-matched clinical isolate by 6-12, 41-96 and 21-81 SNPs, respectively. Fifteen resistance genes were identified across all isolates, including fosA7, a gene only recently found in a limited number of Salmonella and a =95?%?phenotype to genotype correlation was observed for all tested antimicrobials. Moreover, AMR was primarily plasmid-mediated in S. Heidelberg and S. Typhimurium var. O5- subset 2, whereas AMR was chromosomally carried in S. Typhimurium var. O5- subset 1. Similar plasmids were identified in both the retail meat and clinical isolates. Collectively, these data highlight the utility of WGS in retrospective analyses and enhancing integrated surveillance for Salmonella from multiple sources.


April 21, 2020

A systematic review of the Trypanosoma cruzi genetic heterogeneity, host immune response and genetic factors as plausible drivers of chronic chagasic cardiomyopathy.

Chagas disease is a complex tropical pathology caused by the kinetoplastid Trypanosoma cruzi. This parasite displays massive genetic diversity and has been classified by international consensus in at least six Discrete Typing Units (DTUs) that are broadly distributed in the American continent. The main clinical manifestation of the disease is the chronic chagasic cardiomyopathy (CCC) that is lethal in the infected individuals. However, one intriguing feature is that only 30-40% of the infected individuals will develop CCC. Some authors have suggested that the immune response, host genetic factors, virulence factors and even the massive genetic heterogeneity of T. cruzi are responsible of this clinical pattern. To date, no conclusive data support the reason why a few percentages of the infected individuals will develop CCC. Therefore, we decided to conduct a systematic review analysing the host genetic factors, immune response, cytokine production, virulence factors and the plausible association of the parasite DTUs and CCC. The epidemiological and clinical implications are herein discussed.


April 21, 2020

Genome Sequence of Bacillus Velezensis W1, A Strain with Strong Acaricidal Activity against Two-Spotted Spider Mite (Tetranychus Urticae)

Bacillus velezensis W1, isolated from two-spotted spider mites that had died naturally, is a patented strain with strong capability to cause mortality of the phytophagous mite Tetranychus urticae. The whole genome of W1 was completely sequenced with a combination of an Illumina Miseq platform (400-bp paired-end) with 2 × 250 bases and a Pacific Biosciences (PaBio) RS II Single Molecule Real Time (SMRT) sequencing platform using a 20 kb SMRTbellTM template library. Here, we report the complete genome sequence of B. velezensis W1, including one circular chromosome of 4,237,431 bp encoding 4,352 genes with GC content of 45.84%, providing insights into the genomic basis of its acaricidal activity and facilitating its application in red spider mite biocontrol.


April 21, 2020

Multidrug-Resistant Bovine Salmonellosis Predisposing for Severe Human Clostridial Myonecrosis.

BACKGROUND The overuse of antibiotics in animals promotes the development of multidrug-resistance predisposing for severe polymicrobial human infections. CASE REPORT We describe a case of spontaneous clostridial myonecrosis due to ulcerative colonic infection with multidrug-resistant Salmonella enterica subsp. enterica, serotype 4,[5],12: i: -. Serotyping of the colonic Salmonella isolate in the index case and the bovine farm outbreak isolates from where the patient worked indicated they were both serotype I 4,[5],12: i: -, which is linked with a multitude of large reported disease outbreaks. Further analysis revealed that they are highly genetically related and antibiotic susceptibility testing indicated that they are phenotypically identical. CONCLUSIONS Enteritis due to human acquisition of multidrug-resistant Salmonella from cattle led to the invasion and dissemination of Clostridium septicum resulting in devastating myonecrotic disease. This highlights the ramifications of co-existence and evolution of pathogenic bacteria in animals and humans and lends support to reducing the use of antibiotics in animals.


April 21, 2020

Complete genome sequence unveiled cellulose degradation enzymes and secondary metabolic potentials in Streptomyces sp. CC0208.

Marine Streptomyces sp. CC0208 isolated from the Bohai Bay showed high efficiency of cellulose degradation under optimized fermentation parameters. Also, as one of the bioinformatics-based approaches for the discovery of novel natural product and enzyme effectively, genome mining has been developed and applied widely. Herein, we reported the complete genome sequence of Streptomyces sp. CC0208.Whole-genome sequencing analysis revealed a genome size of 9,325,981?bp with a linear chromosome, GC content of 70.59% and 8487 protein-coding genes. Abundant genes have predicted functions in antibiotic metabolism and enzymes. A 20 enzymes closely associated with cellulose degradation were discovered. A total of 25 biosynthetic gene clusters (BGCs) of secondary metabolites were identified, including diverse classes of natural products. The availability of genome sequence of Streptomyces sp. CC0208 not only will assist in cracking the mechanism of cellulose degradation but also will provide the insights into the significant secondary metabolic potentials for the production of diverse compound classes based on rational strategies. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.


April 21, 2020

Carbohydrate catabolic capability of a Flavobacteriia bacterium isolated from hadal water.

Flavobacteriia are abundant in many marine environments including hadal waters, as demonstrated recently. However, it is unclear how this flavobacterial population adapts to hadal conditions. In this study, extensive comparative genomic analyses were performed for the flavobacterial strain Euzebyella marina RN62 isolated from the Mariana Trench hadal water in low abundance. The complete genome of RN62 possessed a considerable number of carbohydrate-active enzymes with a different composition. There was a predominance of GH family 13 proteins compared to closely related relatives, suggesting that RN62 has preserved a certain capacity for carbohydrate utilization and that the hadal ocean may hold an organic matter reservoir distinct from the surface ocean. Additionally, RN62 possessed potential intracellular cycling of the glycogen/starch pathway, which may serve as a strategy for carbon storage and consumption in response to nutrient pulse and starvation. Moreover, the discovery of higher glycoside hydrolase dissimilarities among Flavobacteriia, compared to peptidases and transporters, suggested variation in polysaccharide utilization related traits as an important ecophysiological factor in response to environmental alterations, such as decreased labile organic carbon in hadal waters. The presence of abundant toxin exporting, transcription and signal transduction related genes in RN62 may further help to survive in hadal conditions, including high pressure/low temperature.Copyright © 2019 Elsevier GmbH. All rights reserved.


April 21, 2020

Evolution of Goat’s Rue Rhizobia (Neorhizobium galegae): Analysis of Polymorphism of the Nitrogen Fixation and Nodule Formation Genes

The goat’s rue rhizobia (Neorhizobium galegae) represent a convenient model to study the evolution and speciation of symbiotic bacteria. This rhizobial species is composed of two biovars (bv. orientalis and bv. officinalis), which form N2-fixing nodules with certain species of goat’s rue (Galega orientalis and G. officinalis). The cross-inoculation between them results in the formation of nodules unable to fix nitrogen. On the basis of the data on the whole-genome sequencing, we studied the nucleotide polymorphism of 11 N. galegae strains isolated from the North Caucasus ecosystems, where G. orientalis has higher diversity than G. officinalis. The low level of differences in the polymorphism within the group of the sym genes in comparison with the nonsymbiotic genes can be associated with the active participation of host plants in the evolution of rhizobia. The intragenic polymorphism of bv. orientalis proved to be significantly higher than that of bv. officinalis. The level of polymorphism of nonsymbiotic genes was lower than that of the symbiotic genes, which are functionally more homogeneous. The divergence of the nitrogen fixation genes (nif/fix) is more pronounced than that of the nodule formation genes (nod) in the N. galegae biovars. These facts indicate the leading role of the host-specific nitrogen fixation in the evolution of the studied rizhobial species.


April 21, 2020

A new variant of mcr-1 identified from an extended-spectrum ß lactamase-producing Escherichia coli.

Plasmid-mediated colistin resistance gene, mcr-1, has been widely reported almost all over the world. The product of the gene, MCR-1, is one of the members of the phosphoethanolamine transferase enzyme family, which can add phosphoethanolamine to lipid A, thus reducing affinity to polymyxins. Isolates carrying mcr-1 gene are often multidrug resistant (MDR), including co-production of MCR-1 and extended spectrum B lactamases (ESBLs) or carbapenemases, resulting in great clinical concerns.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.