Menu
September 22, 2019

An improved genome assembly for Larimichthys crocea reveals hepcidin gene expansion with diversified regulation and function.

Larimichthys crocea (large yellow croaker) is a type of perciform fish well known for its peculiar physiological properties and economic value. Here, we constructed an improved version of the L. crocea genome assembly, which contained 26,100 protein-coding genes. Twenty-four pseudo-chromosomes of L. crocea were also reconstructed, comprising 90% of the genome assembly. This improved assembly revealed several expansions in gene families associated with olfactory detection, detoxification, and innate immunity. Specifically, six hepcidin genes (LcHamps) were identified in L. crocea, possibly resulting from lineage-specific gene duplication. All LcHamps possessed similar genomic structures and functional domains, but varied substantially with respect to expression pattern, transcriptional regulation, and biological function. LcHamp1 was associated specifically with iron metabolism, while LcHamp2s were functionally diverse, involving in antibacterial activity, antiviral activity, and regulation of intracellular iron metabolism. This functional diversity among gene copies may have allowed L. crocea to adapt to diverse environmental conditions.


September 22, 2019

Nonmutational mechanism of inheritance in the Archaeon Sulfolobus solfataricus.

Epigenetic phenomena have not yet been reported in archaea, which are presumed to use a classical genetic process of heritability. Here, analysis of independent lineages of Sulfolobus solfataricus evolved for enhanced fitness implicated a non-Mendelian basis for trait inheritance. The evolved strains, called super acid-resistant Crenarchaeota (SARC), acquired traits of extreme acid resistance and genome stability relative to their wild-type parental lines. Acid resistance was heritable because it was retained regardless of extensive passage without selection. Despite the hereditary pattern, in one strain, it was impossible for these SARC traits to result from mutation because its resequenced genome had no mutation. All strains also had conserved, heritable transcriptomes implicated in acid resistance. In addition, they had improved genome stability with absent or greatly decreased mutation and transposition relative to a passaged control. A mechanism that would confer these traits without DNA sequence alteration could involve posttranslationally modified archaeal chromatin proteins. To test this idea, homologous recombination with isogenic DNA was used to perturb native chromatin structure. Recombination at up-regulated loci from the heritable SARC transcriptome reduced acid resistance and gene expression in the majority of recombinants. In contrast, recombination at a control locus that was not part of the heritable transcriptome changed neither acid resistance nor gene expression. Variation in the amount of phenotypic and expression changes across individuals was consistent with Rad54-dependent chromatin remodeling that dictated crossover location and branch migration. These data support an epigenetic model implicating chromatin structure as a contributor to heritable traits.


September 22, 2019

Complete genome sequencing of Lactobacillus plantarum ZLP001, a potential probiotic that enhances intestinal epithelial barrier function and defense against pathogens in pigs.

The mammalian gastrointestinal tract is a heterogeneous ecosystem with the most abundant, and one of the most diverse, microbial communities. The gut microbiota, which may contain more than 100 times the number of genes in the human genome, endows the host with beneficial functional features, including colonization resistance, nutrient metabolism, and immune tolerance (Bäckhed, 2005). Dysbiosis of gut microbiota may result in serious adverse consequences for the host, such as neurological disorders, cancer, obesity, malnutrition, inflammatory dysregulation, and susceptibility to pathogens


September 22, 2019

Out in the cold: Identification of genomic regions associated with cold tolerance in the biocontrol fungus Clonostachys rosea through genome-wide association mapping.

There is an increasing importance for using biocontrol agents in combating plant diseases sustainably and in the long term. As large scale genomic sequencing becomes economically viable, the impact of single nucleotide polymorphisms (SNPs) on biocontrol-associated phenotypes can be easily studied across entire genomes of fungal populations. Here, we improved a previously reported genome assembly of the biocontrol fungus Clonostachys rosea strain IK726 using the PacBio sequencing platform, which resulted in a total genome size of 70.7 Mbp and 21,246 predicted genes. We further performed whole-genome re-sequencing of 52 additional C. rosea strains isolated globally using Illumina sequencing technology, in order to perform genome-wide association studies in conditions relevant for biocontrol activity. One such condition is the ability to grow at lower temperatures commonly encountered in cryic or frigid soils in temperate regions, as these will be prevalent for protecting growing crops in temperate climates. Growth rates at 10°C on potato dextrose agar of the 53 sequenced strains of C. rosea were measured and ranged between 0.066 and 0.413 mm/day. Performing a genome wide association study, a total of 1,478 SNP markers were significantly associated with the trait and located in 227 scaffolds, within or close to (< 1000 bp distance) 265 different genes. The predicted gene products included several chaperone proteins, membrane transporters, lipases, and proteins involved in chitin metabolism with possible roles in cold tolerance. The data reported in this study provides a foundation for future investigations into the genetic basis for cold tolerance in fungi, with important implications for biocontrol.


September 22, 2019

Genomic analysis of consecutive Acinetobacter baumannii strains from a single patient.

Acinetobacter baumannii is one of the most important nosocomial pathogens, and thus it is required to investigate how it disseminate in hospitals and infect patients. We performed whole genome sequencing for 24 A. baumannii strains isolated successively from the blood of a single patient to evaluate whether repeated infections were due to re-infection or relapse infection and to investigate within-host evolution. The whole genome of the first strain, BL1, was sequenced de novo using the PacBio RSII system. BL2-BL24, were sequenced with an Illumina Hiseq4000 and mapped to the genome sequences of BL1. We identified 42 single-nucleotide variations among the strains. The SNVs differentiated the strains into three groups, BL1, BL2-BL16, and BL17-BL24, indicating that the patient suffered from re-infections or co-infections by similar, but different strains. The results also showed that A. baumannii strains in each group were rather stable at the genomic level. Our study emphasizes the importance of intensive infection control.


September 22, 2019

Microevolution of Neisseria lactamica during nasopharyngeal colonisation induced by controlled human infection.

Neisseria lactamica is a harmless coloniser of the infant respiratory tract, and has a mutually-excluding relationship with the pathogen Neisseria meningitidis. Here we report controlled human infection with genomically-defined N. lactamica and subsequent bacterial microevolution during 26 weeks of colonisation. We find that most mutations that occur during nasopharyngeal carriage are transient indels within repetitive tracts of putative phase-variable loci associated with host-microbe interactions (pgl and lgt) and iron acquisition (fetA promotor and hpuA). Recurrent polymorphisms occurred in genes associated with energy metabolism (nuoN, rssA) and the CRISPR-associated cas1. A gene encoding a large hypothetical protein was often mutated in 27% of the subjects. In volunteers who were naturally co-colonised with meningococci, recombination altered allelic identity in N. lactamica to resemble meningococcal alleles, including loci associated with metabolism, outer membrane proteins and immune response activators. Our results suggest that phase variable genes are often mutated during carriage-associated microevolution.


September 22, 2019

The enterococcus cassette chromosome, a genomic variation enabler in enterococci.

Enterococcus faecium has a highly variable genome prone to recombination and horizontal gene transfer. Here, we have identified a novel genetic island with an insertion locus and mobilization genes similar to those of staphylococcus cassette chromosome elements SCCmec This novel element termed the enterococcus cassette chromosome (ECC) element was located in the 3′ region of rlmH and encoded large serine recombinases ccrAB similar to SCCmec Horizontal transfer of an ECC element termed ECC::cat containing a knock-in cat chloramphenicol resistance determinant occurred in the presence of a conjugative reppLG1 plasmid. We determined the ECC::cat insertion site in the 3′ region of rlmH in the E. faecium recipient by long-read sequencing. ECC::cat also mobilized by homologous recombination through sequence identity between flanking insertion sequence (IS) elements in ECC::cat and the conjugative plasmid. The ccrABEnt genes were found in 69 of 516 E. faecium genomes in GenBank. Full-length ECC elements were retrieved from 32 of these genomes. ECCs were flanked by attR and attL sites of approximately 50?bp. The attECC sequences were found by PCR and sequencing of circularized ECCs in three strains. The genes in ECCs contained an amalgam of common and rare E. faecium genes. Taken together, our data imply that ECC elements act as hot spots for genetic exchange and contribute to the large variation of accessory genes found in E. faeciumIMPORTANCEEnterococcus faecium is a bacterium found in a great variety of environments, ranging from the clinic as a nosocomial pathogen to natural habitats such as mammalian intestines, water, and soil. They are known to exchange genetic material through horizontal gene transfer and recombination, leading to great variability of accessory genes and aiding environmental adaptation. Identifying mobile genetic elements causing sequence variation is important to understand how genetic content variation occurs. Here, a novel genetic island, the enterococcus cassette chromosome, is shown to contain a wealth of genes, which may aid E. faecium in adapting to new environments. The transmission mechanism involves the only two conserved genes within ECC, ccrABEnt, large serine recombinases that insert ECC into the host genome similarly to SCC elements found in staphylococci. Copyright © 2018 Sivertsen et al.


September 22, 2019

Genomic surveillance of Enterococcus faecium reveals limited sharing of strains and resistance genes between livestock and humans in the United Kingdom.

Vancomycin-resistant Enterococcus faecium (VREfm) is a major cause of nosocomial infection and is categorized as high priority by the World Health Organization global priority list of antibiotic-resistant bacteria. In the past, livestock have been proposed as a putative reservoir for drug-resistant E. faecium strains that infect humans, and isolates of the same lineage have been found in both reservoirs. We undertook cross-sectional surveys to isolate E. faecium (including VREfm) from livestock farms, retail meat, and wastewater treatment plants in the United Kingdom. More than 600 isolates from these sources were sequenced, and their relatedness and antibiotic resistance genes were compared with genomes of almost 800 E. faecium isolates from patients with bloodstream infection in the United Kingdom and Ireland. E. faecium was isolated from 28/29 farms; none of these isolates were VREfm, suggesting a decrease in VREfm prevalence since the last UK livestock survey in 2003. However, VREfm was isolated from 1% to 2% of retail meat products and was ubiquitous in wastewater treatment plants. Phylogenetic comparison demonstrated that the majority of human and livestock-related isolates were genetically distinct, although pig isolates from three farms were more genetically related to human isolates from 2001 to 2004 (minimum of 50?single-nucleotide polymorphisms [SNPs]). Analysis of accessory (variable) genes added further evidence for distinct niche adaptation. An analysis of acquired antibiotic resistance genes and their variants revealed limited sharing between humans and livestock. Our findings indicate that the majority of E. faecium strains infecting patients are largely distinct from those from livestock in this setting, with limited sharing of strains and resistance genes.IMPORTANCE The rise in rates of human infection caused by vancomycin-resistant Enterococcus faecium (VREfm) strains between 1988 to the 2000s in Europe was suggested to be associated with acquisition from livestock. As a result, the European Union banned the use of the glycopeptide drug avoparcin as a growth promoter in livestock feed. While some studies reported a decrease in VREfm in livestock, others reported no reduction. Here, we report the first livestock VREfm prevalence survey in the UK since 2003 and the first large-scale study using whole-genome sequencing to investigate the relationship between E. faecium strains in livestock and humans. We found a low prevalence of VREfm in retail meat and limited evidence for recent sharing of strains between livestock and humans with bloodstream infection. There was evidence for limited sharing of genes encoding antibiotic resistance between these reservoirs, a finding which requires further research. Copyright © 2018 Gouliouris et al.


September 22, 2019

Spread of the florfenicol resistance floR gene among clinical Klebsiella pneumoniae isolates in China.

Florfenicol is a derivative of chloramphenicol that is used only for the treatment of animal diseases. A key resistance gene for florfenicol, floR, can spread among bacteria of the same and different species or genera through horizontal gene transfer. To analyze the potential transmission of resistance genes between animal and human pathogens, we investigated floR in Klebsiella pneumoniae isolates from patient samples. floR in human pathogens may originate from animal pathogens and would reflect the risk to human health of using antimicrobial agents in animals.PCR was used to identify floR-positive strains. The floR genes were cloned, and the minimum inhibitory concentrations (MICs) were determined to assess the relative resistance levels of the genes and strains. Sequencing and comparative genomics methods were used to analyze floR gene-related sequence structure as well as the molecular mechanism of resistance dissemination.Of the strains evaluated, 20.42% (67/328) were resistant to florfenicol, and 86.96% (20/23) of the floR-positive strains demonstrated high resistance to florfenicol with MICs =512 µg/mL. Conjugation experiments showed that transferrable plasmids carried the floR gene in three isolates. Sequencing analysis of a plasmid approximately 125 kb in size (pKP18-125) indicated that the floR gene was flanked by multiple copies of mobile genetic elements. Comparative genomics analysis of a 9-kb transposon-like fragment of pKP18-125 showed that an approximately 2-kb sequence encoding lysR-floR-virD2 was conserved in the majority (79.01%, 83/105) of floR sequences collected from NCBI nucleotide database. Interestingly, the most similar sequence was a 7-kb fragment of plasmid pEC012 from an Escherichia coli strain isolated from a chicken.Identified on a transferable plasmid in the human pathogen K. pneumoniae, the floR gene may be disseminated through horizontal gene transfer from animal pathogens. Studies on the molecular mechanism of resistance gene dissemination in different bacterial species of animal origin could provide useful information for preventing or controlling the spread of resistance between animal and human pathogens.


September 22, 2019

Leishmania genome dynamics during environmental adaptation reveal strain-specific differences in gene copy number variation, karyotype instability, and telomeric amplification.

Protozoan parasites of the genus Leishmania adapt to environmental change through chromosome and gene copy number variations. Only little is known about external or intrinsic factors that govern Leishmania genomic adaptation. Here, by conducting longitudinal genome analyses of 10 new Leishmania clinical isolates, we uncovered important differences in gene copy number among genetically highly related strains and revealed gain and loss of gene copies as potential drivers of long-term environmental adaptation in the field. In contrast, chromosome rather than gene amplification was associated with short-term environmental adaptation to in vitro culture. Karyotypic solutions were highly reproducible but unique for a given strain, suggesting that chromosome amplification is under positive selection and dependent on species- and strain-specific intrinsic factors. We revealed a progressive increase in read depth towards the chromosome ends for various Leishmania isolates, which may represent a nonclassical mechanism of telomere maintenance that can preserve integrity of chromosome ends during selection for fast in vitro growth. Together our data draw a complex picture of Leishmania genomic adaptation in the field and in culture, which is driven by a combination of intrinsic genetic factors that generate strain-specific phenotypic variations, which are under environmental selection and allow for fitness gain.IMPORTANCE Protozoan parasites of the genus Leishmania cause severe human and veterinary diseases worldwide, termed leishmaniases. A hallmark of Leishmania biology is its capacity to adapt to a variety of unpredictable fluctuations inside its human host, notably pharmacological interventions, thus, causing drug resistance. Here we investigated mechanisms of environmental adaptation using a comparative genomics approach by sequencing 10 new clinical isolates of the L. donovani, L. major, and L. tropica complexes that were sampled across eight distinct geographical regions. Our data provide new evidence that parasites adapt to environmental change in the field and in culture through a combination of chromosome and gene amplification that likely causes phenotypic variation and drives parasite fitness gains in response to environmental constraints. This novel form of gene expression regulation through genomic change compensates for the absence of classical transcriptional control in these early-branching eukaryotes and opens new venues for biomarker discovery. Copyright © 2018 Bussotti et al.


September 22, 2019

N6-methyladenine DNA modification in Xanthomonas oryzae pv. oryzicola genome.

DNA N6-methyladenine (6mA) modifications expand the information capacity of DNA and have long been known to exist in bacterial genomes. Xanthomonas oryzae pv. Oryzicola (Xoc) is the causative agent of bacterial leaf streak, an emerging and destructive disease in rice worldwide. However, the genome-wide distribution patterns and potential functions of 6mA in Xoc are largely unknown. In this study, we analyzed the levels and global distribution patterns of 6mA modification in genomic DNA of seven Xoc strains (BLS256, BLS279, CFBP2286, CFBP7331, CFBP7341, L8 and RS105). The 6mA modification was found to be widely distributed across the seven Xoc genomes, accounting for percent of 3.80, 3.10, 3.70, 4.20, 3.40, 2.10, and 3.10 of the total adenines in BLS256, BLS279, CFBP2286, CFBP7331, CFBP7341, L8, and RS105, respectively. Notably, more than 82% of 6mA sites were located within gene bodies in all seven strains. Two specific motifs for 6?mA modification, ARGT and AVCG, were prevalent in all seven strains. Comparison of putative DNA methylation motifs from the seven strains reveals that Xoc have a specific DNA methylation system. Furthermore, the 6?mA modification of rpfC dramatically decreased during Xoc infection indicates the important role for Xoc adaption to environment.


September 22, 2019

Impacts of horizontal gene transfer on the compact genome of the clavulanic acid-producing Streptomyces strain F613-1.

Mobile genetic elements involved in mediating horizontal transfer events contribute to bacterial evolution, and bacterial genomic plasticity and instability result in variation in functional genetic information in Streptomyces secondary metabolism. In a previous study, we reported the complete genome sequence of the industrial Streptomyces strain F613-1, which produces high yields of clavulanic acid. In this study, we used comparative genomics and bioinformatics to investigate the unique genomic features of this strain. Taken together, comparative genomics were used to systematically investigate secondary metabolism capabilities and indicated that frequent exchange of genetic materials between Streptomyces replicons may shape the remarkable diversities in their secondary metabolite repertoires. Moreover, a 136.9-kb giant region of plasticity (RGP) was found in the F613-1 chromosome, and the chromosome and plasmid pSCL4 are densely packed with an exceptionally large variety of potential secondary metabolic gene clusters, involving several determinants putatively accounting for antibiotic production. In addition, the differences in the architecture and size of plasmid pSCL4 between F613-1 and ATCC 27064 suggest that the pSCL4 plasmid could evolve from pSCL4-like and pSCL2-like extrachromosomal replicons. Furthermore, the genomic analyses revealed that strain F613-1 has developed specific genomic architectures and genetic patterns that are well suited to meet the requirements of industrial innovation processes.


September 22, 2019

Complete genome sequence of Bacillus velezensis ZY-1-1 reveals the genetic basis for its hemicellulosic/cellulosic substrate-inducible xylanase and cellulase activities.

Bacillus velezensis ZY-1-1 was isolated from the larval gut of the lignocellulose-rich diet-fed scarab beetle, Holotrichia parallela, and confirmed to possess extremely high xylanase (48153.8?±?412.1 U/L) and relatively moderate cellulase activity (610.1?±?8.2 U/L). Notably, these xylanase and cellulase activities were enhanced by xylan (1.4 and 5.8-fold, respectively) and cellulose (1.1 and 3.5-fold, respectively), which indicated the hemicellulosic/cellulosic substrate-inducible lignocellulolytic activities of this strain. The complete genome of B. velezensis ZY-1-1 comprises of 3,899,251 bp in a circular chromosome with a G?+?C content of 46.6%. Among the predicted 3688 protein-coding genes, 24 genes are involved in the degradation of lignocellulose and other polysaccharides, including 8, 7 and 2 critical genes for the degradation of xylan, cellulose and lignin, respectively. This genome-based analysis will facilitate our understanding of the mechanism underlying the biodegradation of lignocellulose and the biotechnological application of this novel lignocellulolytic bacteria or related enzymes.


September 22, 2019

Complete genome sequence of Burkholderia sp. JP2-270, a rhizosphere isolate of rice with antifungal activity against Rhizoctonia solani.

Burkholderia sp. JP2-270, a bacterium with a strong ability to inhibit the growth of Rhizoctonia solani, was isolated from the rhizosphere of rice. The phylogenetic analysis based on 16S rRNA gene revealed that JP2-270 belonged to Burkholderia cepacia complex. Here, we present the complete genome sequence of Burkholderia sp. JP2-270, which consists of three circular chromosomes (Chr1 3,723,585 bp, Chr2 3,274,969 bp, Chr3 1,483,367 bp) and two plasmids (Plas1 15,126 bp, Plas2 428,263 bp). A total of 8193 protein coding genes were predicted in the genome, including 67 tRNA genes, 18 rRNA genes and 4 ncRNA genes. In addition, mutation analysis of Burkholderia sp. JP2-270 revealed that the gene bysR (DM992_17470), encoding a lysR-type transcriptional regulator, was essential for the antagonistic activity of Burkholderia sp. JP2-270 against R. solani GD118 in vitro and in vivo. Identification of regulatory gene associated with antagonistic activity will contribute to understand the antagonistic mechanism of Burkholderia sp. JP2-270. Copyright © 2018 Elsevier Ltd. All rights reserved.


September 22, 2019

Complete genome sequence of the cyprodinil-degrading bacterium Acinetobacter johnsonii LXL_C1.

Acinetobacter johnsonii LXL_C1, a cyprodinil degrader, was isolated and purified from cyprodinil-contaminated agricultural soil. Here, we report the complete genome sequence of LXL_C1. The genome comprises one 3,398,706 bp circular chromosome with 41.2% G + C content and one 44,866 bp plasmid. Annotation based on COG and KEGG database analyses revealed genes encoding a cytochrome P450 monooxygenase and hydrolase, which can effectively degrade cyprodinil. The complete genome sequence of LXL_C1 can facilitate genetic engineering of a recombinant cyprodinil degrader. Copyright © 2018 Elsevier Ltd. All rights reserved.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.