September 22, 2019  |  

Complete genome sequence of Bacillus velezensis ZY-1-1 reveals the genetic basis for its hemicellulosic/cellulosic substrate-inducible xylanase and cellulase activities.

Authors: Zhang, Zhen-Yu and Raza, Muhammad Fahim and Zheng, Ziqiang and Zhang, Xuhao and Dong, Xinxin and Zhang, Hongyu

Bacillus velezensis ZY-1-1 was isolated from the larval gut of the lignocellulose-rich diet-fed scarab beetle, Holotrichia parallela, and confirmed to possess extremely high xylanase (48153.8?±?412.1 U/L) and relatively moderate cellulase activity (610.1?±?8.2 U/L). Notably, these xylanase and cellulase activities were enhanced by xylan (1.4 and 5.8-fold, respectively) and cellulose (1.1 and 3.5-fold, respectively), which indicated the hemicellulosic/cellulosic substrate-inducible lignocellulolytic activities of this strain. The complete genome of B. velezensis ZY-1-1 comprises of 3,899,251 bp in a circular chromosome with a G?+?C content of 46.6%. Among the predicted 3688 protein-coding genes, 24 genes are involved in the degradation of lignocellulose and other polysaccharides, including 8, 7 and 2 critical genes for the degradation of xylan, cellulose and lignin, respectively. This genome-based analysis will facilitate our understanding of the mechanism underlying the biodegradation of lignocellulose and the biotechnological application of this novel lignocellulolytic bacteria or related enzymes.

Journal: 3 Biotech
DOI: 10.1007/s13205-018-1490-x
Year: 2018

Read Publication

Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.