fbpx
X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Sunday, July 7, 2019

Identification of a Pseudomonas aeruginosa PAO1 DNA methyltransferase, its targets, and physiological roles.

DNA methylation is widespread among prokaryotes, and most DNA methylation reactions are catalyzed by adenine DNA methyltransferases, which are part of restriction-modification (R-M) systems. R-M systems are known for their role in the defense against foreign DNA; however, DNA methyltransferases also play functional roles in gene regulation. In this study, we used single-molecule real-time (SMRT) sequencing to uncover the genome-wide DNA methylation pattern in the opportunistic pathogen Pseudomonas aeruginosa PAO1. We identified a conserved sequence motif targeted by an adenine methyltransferase of a type I R-M system and quantified the presence of N(6)-methyladenine using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Changes…

Read More »

Sunday, July 7, 2019

Genome sequence of Escherichia coli E28, a multidrug-resistant strain isolated from a chicken carcass, and its spontaneously inducible prophage.

In this study, we sequenced the complete genome of the multidrug-resistant Escherichia coli strain E28, which was used as an indicator strain for phage therapy in vivo We used a combination of single-molecule real-time and Illumina sequencing technology to reveal the presence of a spontaneously inducible prophage. Copyright © 2017 Schmidt et al.

Read More »

Sunday, July 7, 2019

High metabolic versatility of different toxigenic and non-toxigenic Clostridioides difficile isolates.

Clostridioides difficile (formerly Clostridium difficile) is a major nosocomial pathogen with an increasing number of community-acquired infections causing symptoms from mild diarrhea to life-threatening colitis. The pathogenicity of C. difficile is considered to be mainly associated with the production of genome-encoded toxins A and B. In addition, some strains also encode and express the binary toxin CDT. However; a large number of non-toxigenic C. difficile strains have been isolated from the human gut and the environment. In this study, we characterized the growth behavior, motility and fermentation product formation of 17 different C. difficile isolates comprising five different major genomic…

Read More »

Sunday, July 7, 2019

Characterization and genome comparisons of three Achromobacter phages of the family Siphoviridae.

In this study, we present the characterization and genomic data of three Achromobacter phages belonging to the family Siphoviridae. Phages 83-24, JWX and JWF were isolated from sewage samples in Paris and Braunschweig, respectively, and infect Achromobacter xylosoxidans, an emerging nosocomial pathogen in cystic fibrosis patients. Analysis of morphology and growth parameters revealed that phages 83-24 and JWX have similar properties, both have nearly the same head and tail measurements, and both have a burst size between 85 and 100 pfu/cell. In regard to morphological properties, JWF had a much longer and more flexible tail compared to other phages. The…

Read More »

Sunday, July 7, 2019

Rapid and consistent evolution of colistin resistance in XDR Pseudomonas aeruginosa during morbidostat culture.

Colistin is a last resort antibiotic commonly used against multidrug-resistant strains of Pseudomonas aeruginosa To investigate the potential for in-situ evolution of resistance against colistin and to map the molecular targets of colistin resistance, we exposed two P. aeruginosa isolates to colistin using a continuous culture device known as morbidostat. As a result, colistin resistance reproducibly increased 10-fold within ten days, and 100-fold within 20 days, along with highly stereotypic, yet strain specific mutation patterns. The majority of mutations hit the pmrAB two component signaling system and genes involved in lipopolysaccharide (LPS) synthesis, including lpxC, pmrE, and migA We tracked…

Read More »

Sunday, July 7, 2019

Three novel species with peptidoglycan cell walls form the new genus Lacunisphaera gen. nov. in the family Opitutaceae of the verrucomicrobial subdivision 4.

The cell wall of free-living bacteria consists of peptidoglycan (PG) and is critical for maintenance of shape as dissolved solutes cause osmotic pressure and challenge cell integrity. Surprisingly, the subdivision 4 of the phylum Verrucomicrobia appears to be exceptional in this respect. Organisms of this subdivision are described to be devoid of muramic or diaminopimelic acid (DAP), usually found as components of PG in bacterial cell walls. Here we describe three novel bacterial strains from a freshwater lake, IG15(T), IG16b(T), and IG31(T), belonging to a new genus in the subdivision 4 of Verrucomicrobia which we found to possess PG as…

Read More »

Sunday, July 7, 2019

Complete genome sequence of blaCTX-M-27-encoding Escherichia coli strain H105 of sequence type 131 lineage C1/H30R.

Escherichia coli sequence type 131 (ST131) is the most frequent antimicrobial-resistant lineage of E. coli, propagating extended-spectrum ß-lactamases (ESBL) worldwide. Recently, an alarming rate of increase in isolates of the sublineage C1/H30R-blaCTX-M-27 of ST131 in geographically distant countries was reported. Here, we present the complete genome sequence of the ST131 sublineage C1/H30R E. coli isolate harboring blaCTX-M-27 from Germany. Copyright © 2017 Ghosh et al.

Read More »

Sunday, July 7, 2019

Draft genome sequences of two uncultured Armatimonadetes associated with a Microcystis sp. (Cyanobacteria) isolate.

Two genome sequences of the phylum Armatimonadetes, derived from terrestrial environments, have been previously described. Here, two additional Armatimonadetes genome sequences were obtained via single-molecule real-time (SMRT) sequencing of an enrichment culture of the bloom-forming cyanobacterium Microcystis sp. isolated from a eutrophic lake (Brandenburg, Germany). The genomes are most closely affiliated with the class Fimbriimonadales, although they are smaller than the 5.6-Mbp type strain genome. Copyright © 2017 Woodhouse et al.

Read More »

Sunday, July 7, 2019

The biofilm inhibitor carolacton enters Gram-negative cells: studies using a TolC-deficient strain of Escherichia coli.

The myxobacterial secondary metabolite carolacton inhibits growth of Streptococcus pneumoniae and kills biofilm cells of the caries- and endocarditis-associated pathogen Streptococcus mutans at nanomolar concentrations. Here, we studied the response to carolacton of an Escherichia coli strain that lacked the outer membrane protein TolC. Whole-genome sequencing of the laboratory E. coli strain TolC revealed the integration of an insertion element, IS5, at the tolC locus and a close phylogenetic relationship to the ancient E. coli K-12. We demonstrated via transcriptome sequencing (RNA-seq) and determination of MIC values that carolacton penetrates the phospholipid bilayer of the Gram-negative cell envelope and inhibits growth of…

Read More »

Sunday, July 7, 2019

Determination of the genome and primary transcriptome of syngas fermenting Eubacterium limosum ATCC 8486.

Autotrophic conversion of CO2 to value-added biochemicals has received considerable attention as a sustainable route to replace fossil fuels. Particularly, anaerobic acetogenic bacteria are naturally capable of reducing CO2 or CO to various metabolites. To fully utilize their biosynthetic potential, an understanding of acetogenesis-related genes and their regulatory elements is required. Here, we completed the genome sequence of the syngas fermenting Eubacterium limosum ATCC 8486 and determined its transcription start sites (TSS). We constructed a 4.4?Mb long circular genome with a GC content of 47.2% and 4,090 protein encoding genes. To understand the transcriptional and translational regulation, the primary transcriptome was…

Read More »

Sunday, July 7, 2019

Comparative whole genome analysis of three consecutive Salmonella diarizonae isolates.

Infections of very young children or immunocompromised people with Salmonella of higher subspecies are a well-known phenomenon often associated with contact to cold-blooded animals. We describe the molecular characterization of three S. enterica subsp. diarizonae strains, isolated consecutively over a period of several months from a hospital patient suffering from diarrhea and sepsis with fatal outcome. With the initial isolate the first complete genome sequence of a member of subsp. diarizonae is provided and based on this reference we revealed the genomic differences between the three isolates by use of next-generation sequencing and confirmed by phenotypical tests. Genome comparisons revealed…

Read More »

Sunday, July 7, 2019

High-quality whole-genome sequences of the oligo-mouse-microbiota bacterial community.

The Oligo-Mouse-Microbiota (Oligo-MM(12)) is a community of 12 mouse intestinal bacteria to be used for microbiome research in gnotobiotic mice. We present here the high-quality whole genome sequences of the Oligo-MM(12) strains, which were obtained by combining the accuracy of the Illumina platforms with the long reads of the PacBio technology. Copyright © 2017 Garzetti et al.

Read More »

1 2 3 4 5 6

Subscribe for blog updates:

Archives