Menu
July 19, 2019

Evolutionary restoration of fertility in an interspecies hybrid yeast, by whole-genome duplication after a failed mating-type switch.

Many interspecies hybrids have been discovered in yeasts, but most of these hybrids are asexual and can replicate only mitotically. Whole-genome duplication has been proposed as a mechanism by which interspecies hybrids can regain fertility, restoring their ability to perform meiosis and sporulate. Here, we show that this process occurred naturally during the evolution of Zygosaccharomyces parabailii, an interspecies hybrid that was formed by mating between 2 parents that differed by 7% in genome sequence and by many interchromosomal rearrangements. Surprisingly, Z. parabailii has a full sexual cycle and is genetically haploid. It goes through mating-type switching and autodiploidization, followed by immediate sporulation. We identified the key evolutionary event that enabled Z. parabailii to regain fertility, which was breakage of 1 of the 2 homeologous copies of the mating-type (MAT) locus in the hybrid, resulting in a chromosomal rearrangement and irreparable damage to 1 MAT locus. This rearrangement was caused by HO endonuclease, which normally functions in mating-type switching. With 1 copy of MAT inactivated, the interspecies hybrid now behaves as a haploid. Our results provide the first demonstration that MAT locus damage is a naturally occurring evolutionary mechanism for whole-genome duplication and restoration of fertility to interspecies hybrids. The events that occurred in Z. parabailii strongly resemble those postulated to have caused ancient whole-genome duplication in an ancestor of Saccharomyces cerevisiae.


July 19, 2019

A mobile pathogenicity chromosome in Fusarium oxysporum for infection of multiple cucurbit species.

The genome of Fusarium oxysporum (Fo) consists of a set of eleven ‘core’ chromosomes, shared by most strains and responsible for housekeeping, and one or several accessory chromosomes. We sequenced a strain of Fo f.sp. radicis-cucumerinum (Forc) using PacBio SMRT sequencing. All but one of the core chromosomes were assembled into single contigs, and a chromosome that shows all the hallmarks of a pathogenicity chromosome comprised two contigs. A central part of this chromosome contains all identified candidate effector genes, including homologs of SIX6, SIX9, SIX11 and SIX 13. We show that SIX6 contributes to virulence of Forc. Through horizontal chromosome transfer (HCT) to a non-pathogenic strain, we also show that the accessory chromosome containing the SIX gene homologs is indeed a pathogenicity chromosome for cucurbit infection. Conversely, complete loss of virulence was observed in Forc016 strains that lost this chromosome. We conclude that also a non-wilt-inducing Fo pathogen relies on effector proteins for successful infection and that the Forc pathogenicity chromosome contains all the information necessary for causing root rot of cucurbits. Three out of nine HCT strains investigated have undergone large-scale chromosome alterations, reflecting the remarkable plasticity of Fo genomes.


July 19, 2019

PacBio sequencing reveals transposable element as a key contributor to genomic plasticity and virulence variation in Magnaporthe oryzae.

The sustainable cultivation of rice, which serves as staple food crop for more than half of the world’s population, is under serious threat due to the huge yield losses inflicted by rice blast disease caused by the globally destructive fungus Magnaporthe oryzae (Pyricularia oryzae) (Dean et al., 2012, Nalley et al., 2016, Deng et al., 2017). This filamentous ascomycete fungus is also capable of causing blast infection on other economically important cereal crops, including wheat, millet, and barley, making it the world’s most important plant pathogenic fungus (Zhong et al., 2016). The advent of whole-genome sequencing technology and the subsequent deployment of next-generation sequencing (NGS) strategies have successfully generated genome assemblies for over 50 isolates of M. oryzae, which have played an instrumental role in enhancing our understanding of how rice blast fungus undertakes host adaptation, host specificity, and host range expansion to overcome host resistance (Dean et al., 2005, Xue et al., 2012, Wu et al., 2015, Zhang et al., 2016). However, research findings obtained from comparative genomic studies conducted using the NGS-assembled genome do not present an in-depth account of the genomic features that contribute to the prevailing genomic variations among M. oryzae species, because NGS assemblies are highly fragmented and lack most of the lineage-specific (LS) regions, which are more plastic than the core genome and enriched with repeats and effector proteins (Raffaele and Kamoun, 2012, Faino et al., 2016).


July 19, 2019

Gapless genome assembly of Colletotrichum higginsianum reveals chromosome structure and association of transposable elements with secondary metabolite gene clusters.

The ascomycete fungus Colletotrichum higginsianum causes anthracnose disease of brassica crops and the model plant Arabidopsis thaliana. Previous versions of the genome sequence were highly fragmented, causing errors in the prediction of protein-coding genes and preventing the analysis of repetitive sequences and genome architecture. Here, we re-sequenced the genome using single-molecule real-time (SMRT) sequencing technology and, in combination with optical map data, this provided a gapless assembly of all twelve chromosomes except for the ribosomal DNA repeat cluster on chromosome 7. The more accurate gene annotation made possible by this new assembly revealed a large repertoire of secondary metabolism (SM) key genes (89) and putative biosynthetic pathways (77 SM gene clusters). The two mini-chromosomes differed from the ten core chromosomes in being repeat- and AT-rich and gene-poor but were significantly enriched with genes encoding putative secreted effector proteins. Transposable elements (TEs) were found to occupy 7% of the genome by length. Certain TE families showed a statistically significant association with effector genes and SM cluster genes and were transcriptionally active at particular stages of fungal development. All 24 subtelomeres were found to contain one of three highly-conserved repeat elements which, by providing sites for homologous recombination, were probably instrumental in four segmental duplications.The gapless genome of C. higginsianum provides access to repeat-rich regions that were previously poorly assembled, notably the mini-chromosomes and subtelomeres, and allowed prediction of the complete SM gene repertoire. It also provides insights into the potential role of TEs in gene and genome evolution and host adaptation in this asexual pathogen.


July 19, 2019

Insight into the recent genome duplication of the halophilic yeast Hortaea werneckii: combining an improved genome with gene expression and chromatin structure.

Extremophilic organisms demonstrate the flexibility and adaptability of basic biological processes by highlighting how cell physiology adapts to environmental extremes. Few eukaryotic extremophiles have been well studied and only a small number are amenable to laboratory cultivation and manipulation. A detailed characterization of the genome architecture of such organisms is important to illuminate how they adapt to environmental stresses. One excellent example of a fungal extremophile is the halophile Hortaea werneckii (Pezizomycotina, Dothideomycetes, Capnodiales), a yeast-like fungus able to thrive at near-saturating concentrations of sodium chloride and which is also tolerant to both UV irradiation and desiccation. Given its unique lifestyle and its remarkably recent whole genome duplication, H. werneckii provides opportunities for testing the role of genome duplications and adaptability to extreme environments. We previously assembled the genome of H. werneckii using short-read sequencing technology and found a remarkable degree of gene duplication. Technology limitations, however, precluded high-confidence annotation of the entire genome. We therefore revisited the H. wernickii genome using long-read, single-molecule sequencing and provide an improved genome assembly which, combined with transcriptome and nucleosome analysis, provides a useful resource for fungal halophile genomics. Remarkably, the ~50 Mb H. wernickii genome contains 15,974 genes of which 95% (7608) are duplicates formed by a recent whole genome duplication (WGD), with an average of 5% protein sequence divergence between them. We found that the WGD is extraordinarily recent, and compared to Saccharomyces cerevisiae, the majority of the genome’s ohnologs have not diverged at the level of gene expression of chromatin structure. Copyright © 2017 Sinha et al.


July 19, 2019

The distribution of miniature impala elements and SIX genes in the Fusarium genus is suggestive of horizontal gene transfer.

The mimp family of miniature inverted-repeat transposable elements was previously found only in genomes of Fusarium oxysporum and is contextually associated with virulence genes in this species. Through extensive comparative analysis of 83 F. oxysporum and 52 other Fusarium genomes, we uncovered the distribution of different mimp families throughout the genus. We show that (i) mimps are not exclusive to F. oxysporum; (ii) pathogenic isolates generally possess more mimps than non-pathogenic strains and (iii) two isolates of F. hostae and one F. proliferatum isolate display evidence for horizontal transfer of genetic material to or from F. oxysporum. Multiple instances of mimp elements identical to F. oxysporum mimps were encountered in the genomes of these isolates. Moreover, homologs of effector genes (SIX1, 2, 6, 7, 11 and FomAVR2) were discovered here, several with very high (97-100%) pairwise nucleotide sequence identity scores. These three strains were isolated from infected flower bulbs (Hyacinthus and Lilium spp.). Their ancestors may thus have lived in close proximity to pathogenic strains of F. oxysporum f. sp. hyacinthi and f. sp. lilii. The Fo f. sp. lycopersici SIX2 effector gene was found to be widely distributed (15/18 isolates) throughout the F. fujikuroi species complex, exhibiting a predominantly vertical inheritance pattern. These findings shed light on the potential evolutionary mechanism underlying plant-pathogenicity in Fusarium and show that interspecies horizontal gene transfer may have occurred.


July 19, 2019

Linking secondary metabolites to gene clusters through genome sequencing of six diverse Aspergillus species.

The fungal genus ofAspergillusis highly interesting, containing everything from industrial cell factories, model organisms, and human pathogens. In particular, this group has a prolific production of bioactive secondary metabolites (SMs). In this work, four diverseAspergillusspecies (A. campestris,A. novofumigatus,A. ochraceoroseus, andA. steynii) have been whole-genome PacBio sequenced to provide genetic references in threeAspergillussections.A. taichungensisandA. candidusalso were sequenced for SM elucidation. ThirteenAspergillusgenomes were analyzed with comparative genomics to determine phylogeny and genetic diversity, showing that each presented genome contains 15-27% genes not found in other sequenced Aspergilli. In particular,A. novofumigatuswas compared with the pathogenic speciesA. fumigatusThis suggests thatA. novofumigatuscan produce most of the same allergens, virulence, and pathogenicity factors asA. fumigatus, suggesting thatA. novofumigatuscould be as pathogenic asA. fumigatusFurthermore, SMs were linked to gene clusters based on biological and chemical knowledge and analysis, genome sequences, and predictive algorithms. We thus identify putative SM clusters for aflatoxin, chlorflavonin, and ochrindol inA. ochraceoroseus,A. campestris, andA. steynii, respectively, and novofumigatonin,ent-cycloechinulin, andepi-aszonalenins inA. novofumigatusOur study delivers six fungal genomes, showing the large diversity found in theAspergillusgenus; highlights the potential for discovery of beneficial or harmful SMs; and supports reports ofA. novofumigatuspathogenicity. It also shows how biological, biochemical, and genomic information can be combined to identify genes involved in the biosynthesis of specific SMs.


July 19, 2019

Extreme sensitivity to ultraviolet light in the fungal pathogen causing white-nose syndrome of bats.

Bat white-nose syndrome (WNS), caused by the fungal pathogen Pseudogymnoascus destructans, has decimated North American hibernating bats since its emergence in 2006. Here, we utilize comparative genomics to examine the evolutionary history of this pathogen in comparison to six closely related nonpathogenic species. P. destructans displays a large reduction in carbohydrate-utilizing enzymes (CAZymes) and in the predicted secretome (~50%), and an increase in lineage-specific genes. The pathogen has lost a key enzyme, UVE1, in the alternate excision repair (AER) pathway, which is known to contribute to repair of DNA lesions induced by ultraviolet (UV) light. Consistent with a nonfunctional AER pathway, P. destructans is extremely sensitive to UV light, as well as the DNA alkylating agent methyl methanesulfonate (MMS). The differential susceptibility of P. destructans to UV light in comparison to other hibernacula-inhabiting fungi represents a potential “Achilles’ heel” of P. destructans that might be exploited for treatment of bats with WNS.


July 19, 2019

A near-complete haplotype-phased genome of the dikaryotic wheat stripe rust fungus Puccinia striiformis f. sp. tritici reveals high interhaplotype diversity.

A long-standing biological question is how evolution has shaped the genomic architecture of dikaryotic fungi. To answer this, high-quality genomic resources that enable haplotype comparisons are essential. Short-read genome assemblies for dikaryotic fungi are highly fragmented and lack haplotype-specific information due to the high heterozygosity and repeat content of these genomes. Here, we present a diploid-aware assembly of the wheat stripe rust fungus Puccinia striiformis f. sp. tritici based on long reads using the FALCON-Unzip assembler. Transcriptome sequencing data sets were used to infer high-quality gene models and identify virulence genes involved in plant infection referred to as effectors. This represents the most complete Puccinia striiformis f. sp. tritici genome assembly to date (83 Mb, 156 contigs, N50 of 1.5 Mb) and provides phased haplotype information for over 92% of the genome. Comparisons of the phase blocks revealed high interhaplotype diversity of over 6%. More than 25% of all genes lack a clear allelic counterpart. When we investigated genome features that potentially promote the rapid evolution of virulence, we found that candidate effector genes are spatially associated with conserved genes commonly found in basidiomycetes. Yet, candidate effectors that lack an allelic counterpart are more distant from conserved genes than allelic candidate effectors and are less likely to be evolutionarily conserved within the P. striiformis species complex and Pucciniales In summary, this haplotype-phased assembly enabled us to discover novel genome features of a dikaryotic plant-pathogenic fungus previously hidden in collapsed and fragmented genome assemblies.IMPORTANCE Current representations of eukaryotic microbial genomes are haploid, hiding the genomic diversity intrinsic to diploid and polyploid life forms. This hidden diversity contributes to the organism’s evolutionary potential and ability to adapt to stress conditions. Yet, it is challenging to provide haplotype-specific information at a whole-genome level. Here, we take advantage of long-read DNA sequencing technology and a tailored-assembly algorithm to disentangle the two haploid genomes of a dikaryotic pathogenic wheat rust fungus. The two genomes display high levels of nucleotide and structural variations, which lead to allelic variation and the presence of genes lacking allelic counterparts. Nonallelic candidate effector genes, which likely encode important pathogenicity factors, display distinct genome localization patterns and are less likely to be evolutionary conserved than those which are present as allelic pairs. This genomic diversity may promote rapid host adaptation and/or be related to the age of the sequenced isolate since last meiosis. Copyright © 2018 Schwessinger et al.


July 19, 2019

RNAi is a critical determinant of centromere evolution in closely related fungi.

The centromere DNA locus on a eukaryotic chromosome facilitates faithful chromosome segregation. Despite performing such a conserved function, centromere DNA sequence as well as the organization of sequence elements is rapidly evolving in all forms of eukaryotes. The driving force that facilitates centromere evolution remains an enigma. Here, we studied the evolution of centromeres in closely related species in the fungal phylum of Basidiomycota. Using ChIP-seq analysis of conserved inner kinetochore proteins, we identified centromeres in three closely related Cryptococcus species: two of which are RNAi-proficient, while the other lost functional RNAi. We find that the centromeres in the RNAi-deficient species are significantly shorter than those of the two RNAi-proficient species. While centromeres are LTR retrotransposon-rich in all cases, the RNAi-deficient species lost all full-length retroelements from its centromeres. In addition, centromeres in RNAi-proficient species are associated with a significantly higher level of cytosine DNA modifications compared with those of RNAi-deficient species. Furthermore, when an RNAi-proficient Cryptococcus species and its RNAi-deficient mutants were passaged under similar conditions, the centromere length was found to be occasionally shortened in RNAi mutants. In silico analysis of predicted centromeres in a group of closely related Ustilago species, also belonging to the Basidiomycota, were found to have undergone a similar transition in the centromere length in an RNAi-dependent fashion. Based on the correlation found in two independent basidiomycetous species complexes, we present evidence suggesting that the loss of RNAi and cytosine DNA methylation triggered transposon attrition, which resulted in shortening of centromere length during evolution. Copyright © 2018 the Author(s). Published by PNAS.


July 19, 2019

Introduction: The host-associated microbiome: Pattern, process and function.

An explosion of studies in recent years has established the ubiquity of host-associated microbes and their centrality to host biology (McFall-Ngai et al., 2013; Russell, Dubilier, & Rudgers, 2014). Microbes aid in digestion, modulate development, contribute to host immunity, mediate abiotic stress and more. While relationships with host-associated microbes are ubiquitous and important, they are cer- tainly not monolithic. Characterizing the microbial diversity associ- ated with an ever-broadening array of hosts (diverse animals, plants, algae and protists) has shown that essential functions can be per- formed by microbes that are integrated with the host to varying degrees, ranging from embedded endosymbionts to a variable cast of transient microbes acquired from the environment. The maturing host–microbiome field is now developing a mechanistic understand- ing of host/microbe relationships across this spectrum and the cross- talk mediating these interactions. Similarly, studies across systems are illuminating the ecological and evolutionary factors that shape host–microbe interactions today and providing hints into the origins of specific relationships.


July 19, 2019

Population genomics shows no distinction between pathogenic Candida krusei and environmental Pichia kudriavzevii: One species, four names.

We investigated genomic diversity of a yeast species that is both an opportunistic pathogen and an important industrial yeast. Under the name Candida krusei, it is responsible for about 2% of yeast infections caused by Candida species in humans. Bloodstream infections with C. krusei are problematic because most isolates are fluconazole-resistant. Under the names Pichia kudriavzevii, Issatchenkia orientalis and Candida glycerinogenes, the same yeast, including genetically modified strains, is used for industrial-scale production of glycerol and succinate. It is also used to make some fermented foods. Here, we sequenced the type strains of C. krusei (CBS573T) and P. kudriavzevii (CBS5147T), as well as 30 other clinical and environmental isolates. Our results show conclusively that they are the same species, with collinear genomes 99.6% identical in DNA sequence. Phylogenetic analysis of SNPs does not segregate clinical and environmental isolates into separate clades, suggesting that C. krusei infections are frequently acquired from the environment. Reduced resistance of strains to fluconazole correlates with the presence of one gene instead of two at the ABC11-ABC1 tandem locus. Most isolates are diploid, but one-quarter are triploid. Loss of heterozygosity is common, including at the mating-type locus. Our PacBio/Illumina assembly of the 10.8 Mb CBS573T genome is resolved into 5 complete chromosomes, and was annotated using RNAseq support. Each of the 5 centromeres is a 35 kb gene desert containing a large inverted repeat. This species is a member of the genus Pichia and family Pichiaceae (the methylotrophic yeasts clade), and so is only distantly related to other pathogenic Candida species.


July 19, 2019

From short reads to chromosome-scale genome assemblies.

A high-quality, annotated genome assembly is the foundation for many downstream studies. However, obtaining such an assembly is a complex, reiterative process that requires the assimilation of high-quality data and combines different approaches and data types. While some software packages incorporating multiple steps of genome assembly are commercially available, they may not be flexible enough to be routinely applied to all organisms, particularly to nonmodel species such as pathogenic oomycetes and fungi. If researchers understand and apply the most appropriate, currently available tools for each step, it is possible to customize parameters and optimize results for their organism of study. Based on our experience of de novo assembly and annotation of several oomycete species, this chapter provides a modular workflow from processing of raw reads, to initial assembly generation, through optimization, chromosome-scale scaffolding and annotation, outlining input and output data as well as examples and alternative software used for each step. The accompanying Notes provide background information for each step as well as alternative options. The final result of this workflow could be an annotated, high-quality, validated, chromosome-scale assembly or a draft assembly of sufficient quality to meet specific needs of a project.


July 7, 2019

Finished genome sequence of Collimonas arenae Cal35.

We announce the finished genome sequence of soil forest isolate Collimonas arenae Cal35, which comprises a 5.6-Mbp chromosome and 41-kb plasmid. The Cal35 genome is the second one published for the bacterial genus Collimonas and represents the first opportunity for high-resolution comparison of genome content and synteny among collimonads. Copyright © 2015 Wu et al.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.