Menu
April 21, 2020

Evidence of extensive intraspecific noncoding reshuffling in a 169-kb mitochondrial genome of a basidiomycetous fungus

Comparative genomics of fungal mitochondrial genomes (mitogenomes) have revealed a remarkable pattern of rearrangement between and within major phyla owing to horizontal gene transfer (HGT) and recombination. The role of recombination was exemplified at a finer evolutionary time scale in basidiomycetes group of fungi as they display a diversity of mitochondrial DNA (mtDNA) inheritance patterns. Here, we assembled mitogenomes of six species from the Hymenochaetales order of basidiomycetes and examined 59 mitogenomes from two genetic lineages of Pyrrhoderma noxium. Gene order is largely colinear while intergene regions are major determinants of mitogenome size variation. Substantial sequence divergence was found in shared introns consistent with high HGT frequency observed in yeasts, but we also identified a rare case where an intron was retained in five species since speciation. In contrast to the hyperdiversity observed in nuclear genomes of P. noxium, mitogenomes’ intraspecific polymorphisms at protein coding sequences are extremely low. Phylogeny based on introns revealed turnover as well as exchange of introns between two lineages. Strikingly, some strains harbor a mosaic origin of introns from both lineages. Analysis of intergenic sequence indicated substantial differences between and within lineages, and an expansion may be ongoing as a result of exchange between distal intergenes. These findings suggest that the evolution in mtDNAs is usually lineage specific but chimeric mitotypes are frequently observed, thus capturing the possible evolutionary processes shaping mitogenomes in a basidiomycete. The large mitogenome sizes reported in various basidiomycetes appear to be a result of interspecific reshuffling of intergenes.


April 21, 2020

Genome sequence resource for Ilyonectria mors-panacis, causing rusty root rot of Panax notoginseng.

Ilyonectria mors-panacis is a serious disease hampering the production of Panax notoginseng, an important Chinese medicinal herb, widely used for its anti-inflammatory, anti-fatigue, hepato-protective, and coronary heart disease prevention effects. Here, we report the first Illumina-Pacbio hybrid sequenced draft genome assembly of I. mors-panacis strain G3B and its annotation. The availability of this genome sequence not only represents an important tool toward understanding the genetics behind the infection mechanism of I. mors-panacis strain G3B but also will help illuminate the complexities of the taxonomy of this species.


April 21, 2020

Draft genome sequence resource of switchgrass rust pathogen, Puccinia novopanici isolate Ard-01.

Puccinia novopanici is an important biotrophic fungal pathogen that causes rust disease in switchgrass. Lack of genomic resources for P. novopanici has hampered the progress towards developing effective disease resistance against this pathogen. Therefore, we have sequenced the whole genome of P. novopanici and generated a framework to understand pathogenicity mechanisms, identify effectors, repeat element invasion, genome evolution, and comparative genomics among Puccinia species in the future. Long and short read sequences were generated from P. novopanici genomic DNA by PacBio and Illumina technologies, respectively, and assembled a 99.9 megabase (Mb) genome. Transcripts of P. novopanici were predicted from assembled genome using MAKER and were further validated by RNAseq data. The genome sequence information of P. novopanici will be a valuable resource for researchers working on monocot rusts and plant disease resistance in general.


April 21, 2020

Genome data of Fusarium oxysporum f. sp. cubense race 1 and tropical race 4 isolates using long-read sequencing.

Fusarium wilt of banana is caused by the soil-borne fungal pathogen Fusarium oxysporum f. sp. cubense (Foc). We generated two chromosome-level assemblies of Foc race 1 and tropical race 4 strains using single-molecule real-time sequencing. The Foc1 and FocTR4 assemblies had 35 and 29 contigs with contig N50 lengths of 2.08 Mb and 4.28 Mb, respectively. These two new references genomes represent a greater than 100-fold improvement over the contig N50 statistics of the previous short read-based Foc assemblies. The two high-quality assemblies reported here will be a valuable resource for the comparative analysis of Foc races at the pathogenic levels.


April 21, 2020

Centromere-mediated chromosome break drives karyotype evolution in closely related Malassezia species

Intra-chromosomal or inter-chromosomal genomic rearrangements often lead to speciation. Loss or gain of a centromere leads to alterations in chromosome number in closely related species. Thus, centromeres can enable tracing the path of evolution from the ancestral to a derived state. The Malassezia species complex of the phylum Basiodiomycota shows remarkable diversity in chromosome number ranging between six and nine chromosomes. To understand these transitions, we experimentally identified all eight centromeres as binding sites of an evolutionarily conserved outer kinetochore protein Mis12/Mtw1 in M. sympodialis. The 3 to 5 kb centromere regions share an AT-rich, poorly transcribed core region enriched with a 12 bp consensus motif. We also mapped nine such AT-rich centromeres in M. globosa and the related species Malassezia restricta and Malassezia slooffiae. While eight predicted centromeres were found within conserved synteny blocks between these species and M. sympodialis, the remaining centromere in M. globosa (MgCEN2) or its orthologous centromere in M. slooffiae (MslCEN4) and M. restricta (MreCEN8) mapped to a synteny breakpoint compared with M. sympodialis. Taken together, we provide evidence that breakage and loss of a centromere (CEN2) in an ancestral Malassezia species possessing nine chromosomes resulted in fewer chromosomes in M. sympodialis. Strikingly, the predicted centromeres of all closely related Malassezia species map to an AT-rich core on each chromosome that also shows enrichment of the 12 bp sequence motif. We propose that centromeres are fragile AT-rich sites driving karyotype diversity through breakage and inactivation in these and other species.


April 21, 2020

Haplotype-phased genome assembly of virulent Phythophthora ramorum isolate ND886 facilitated by long-read sequencing reveals effector polymorphisms and copy number variation.

Phytophthora ramorum is a destructive pathogen that causes Sudden Oak Death. The genome sequence of P. ramorum isolate Pr102 was previously produced using Sanger reads, and contained 12 Mb of gaps. However, isolate Pr102 had shown reduced aggressiveness and genome abnormalities. In order to produce an improved genome assembly for P. ramorum, we performed long read sequencing of highly aggressive P. ramorum isolate CDFA1418886 (abbreviated as ND886). We generated a 60.5 Mb assembly of the ND886 genome using the Pacific Biosciences sequencing platform. The assembly includes 302 primary contigs (60.2 Mb) and 9 unplaced contigs (265 Kb). Additionally, we found a “Highly repetitive” component from the Pacbio unassembled unmapped reads containing tandem repeats that are not part of the 60.5 Mb genome. The overall repeat content in the primary assembly was much higher than the Pr102 Sanger version (48% vs. 29%) indicating that the long reads have captured repetitive regions effectively. The 302 primary contigs were phased into 345 haplotype blocks and 222,892 phased variants, of which the longest phased block was 1,513,201 bp with 7,265 phased variants. The improved phased assembly facilitated identification of 21 and 25 Crinkler effectors and 393 and 394 RXLR effector genes from two haplotypes. Of these, 24 and 25 RXLR effectors were newly predicted from Haplotype A and Haplotype B, respectively. In addition, 7 new paralogs of effector Avh207 were found in contig 54, not reported earlier. Comparison of the ND886 assembly with Pr102 V1 assembly suggests that several repeat-rich smaller scaffolds within the Pr102 V1 assembly were possibly misassembled; these regions are fully encompassed now in ND886 contigs. Our analysis further reveals that Pr102 is a heterokaryon with multiple nuclear types in the sequences corresponding to contig 10 of ND886 assembly.


April 21, 2020

Combinations of Spok genes create multiple meiotic drivers in Podospora.

Meiotic drive is the preferential transmission of a particular allele during sexual reproduction. The phenomenon is observed as spore killing in multiple fungi. In natural populations of Podospora anserina, seven spore killer types (Psks) have been identified through classical genetic analyses. Here we show that the Spok gene family underlies the Psks. The combination of Spok genes at different chromosomal locations defines the spore killer types and creates a killing hierarchy within a population. We identify two novel Spok homologs located within a large (74-167 kbp) region (the Spok block) that resides in different chromosomal locations in different strains. We confirm that the SPOK protein performs both killing and resistance functions and show that these activities are dependent on distinct domains, a predicted nuclease and kinase domain. Genomic and phylogenetic analyses across ascomycetes suggest that the Spok genes disperse through cross-species transfer, and evolve by duplication and diversification within lineages. © 2019, Vogan et al.


April 21, 2020

High-Quality Draft Genome Sequence of Fusarium oxysporum f. sp. cubense Strain 160527, a Causal Agent of Panama Disease.

Fusarium oxysporum f. sp. cubense is the causal agent of banana Fusarium wilt, also known as Panama disease. Here, we present a high-quality genome sequence of F. oxysporum f. sp. cubense strain 160527. The genome assembly is composed of 12 contigs with a total assembly length of 51,139,495?bp (N50 contig length, 4,884,632?bp). Copyright © 2019 Asai et al.


April 21, 2020

Draft Genome Sequence of the Wood-Decaying Fungus Xylaria sp. BCC 1067.

Xylaria sp. BCC 1067 is a wood-decaying fungus which is capable of producing lignocellulolytic enzymes. Based on the results of a single-molecule real-time sequencing technology analysis, we present the first draft genome of Xylaria sp. BCC 1067, comprising 54.1?Mb with 12,112 protein-coding genes.Copyright © 2019 Sutheeworapong et al.


April 21, 2020

First Draft Genome Sequence of a Pearl Millet Blast Pathogen, Magnaporthe grisea Strain PMg_Dl, Obtained Using PacBio Single-Molecule Real-Time and Illumina NextSeq 500 Sequencing.

The first draft genome sequence of the pearl millet blast pathogen Magnaporthe grisea PMg_Dl from India is presented. The genome information of M. grisea will be useful to understand the Magnaporthe speciation, genetic diversity, environmental adaptation, and pathogenic and host range determinants.Copyright © 2019 Prakash et al.


April 21, 2020

Whole-Genome Sequence of an Isogenic Haploid Strain, Saccharomyces cerevisiae IR-2idA30(MATa), Established from the Industrial Diploid Strain IR-2.

We present the draft genome sequence of an isogenic haploid strain, IR-2idA30(MATa), established from Saccharomyces cerevisiae IR-2. Assembly of long reads and previously obtained contigs from the genome of diploid IR-2 resulted in 50 contigs, and the variations and sequencing errors were corrected by short reads. Copyright © 2019 Fujimori et al.


April 21, 2020

Resequencing the Genome of Malassezia restricta Strain KCTC 27527.

The draft genome sequence of Malassezia restricta KCTC 27527, a clinical isolate from a patient with dandruff, was previously reported. Using the PacBio Sequel platform, we completed and reannotated the genome of M. restricta KCTC 27527 for a better understanding of the genome of this fungus.Copyright © 2019 Cho et al.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.