X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Sunday, October 25, 2020

Seminar: Optimizing eukaryotic de novo genome assembly with long-read sequencing

This seminar features great hands-on information and best practices for analyzing SMRT Sequencing data for eukaryotic genome assembly. Michael Schatz provides an overview of the assembly tools, provides recommendations for when to use each one, and discusses the challenges of short-read assemblies. James Gurtowski gives an in-depth overview of hybrid assemblies methods, where short read data are used used to correct errors in longer reads. Finally, Sergey Koren presents on chromosome-scale assembly, including the MinHash Alignment Process (MHAP) he developed to dramatically reduce the computational processing power required for genome assemblies.

Read More »

Sunday, October 25, 2020

Webinar: DNA quality requirements for single-molecule sequencing

Dr. Olga Vinnere Pettersson, Uppsala Genome Center (Uppsala University), presents best practices for qualifying genomic DNA from a variety of sources to be suitable for Single Molecule, Real-Time Sequencing. Factors that affect single molecule sequencing and recommendations for extracting high-quality genomic DNA will be described. (requires file download to view)

Read More »

Sunday, October 25, 2020

PAG Conference: Diploid genome assembly and comprehensive haplotype sequence reconstruction

Jason Chin, senior director of bioinformatics at PacBio, talks about using long-read sequence data to generate diploid genome assemblies to produce comprehensive haplotype sequence reconstructions. In the presentation, Chin describes the FALCON Unzip process that combines SNP phasing with the assembly process and allows for determination of the haplotype sequences and identification of structural variants. He presents an example of diploid assembly from inbred Arabidopsis strains.

Read More »

Sunday, October 25, 2020

Tutorial: HGAP4 de novo assembly application [SMRT Link v5.0.0]

This tutorial provides an overview of the Hierarchical Genome Assembly Process (HGAP4) de novo assembly analysis application. HGAP4 generates accurate de novo assemblies using only PacBio data. HGAP4 is suitable for assembling a wide range of genome sizes and complexity. HGAP4 now includes some support for diploid-aware assembly. This tutorial covers features of SMRT Link v5.0.0.

Read More »

Sunday, October 25, 2020

Webinar: Understanding, curating, and analyzing your diploid genome assembly

The goal of this session is to help users complete their PacBio genome assembly and generate the best resource for their research. Kingan begins with a brief review of the diploid assembly process used by FALCON and FALCON-Unzip, highlighting the enhanced phasing of the Unzip module, and concluding with recommendations for genome polishing. Next, she explores how heterozygosity can influence the assembly process and how read coverage depth along the assembly can reveal important characteristics of assembly structure. Kingan then recommends approaches, including specific tools, that can be used to quality filter and curate the assembly, including annotation-, coverage-, and…

Read More »

Tuesday, April 21, 2020

De novo assembly and annotation of the Ganoderma australe genome.

The Ganoderma genus represents clear biotechnological potential, due to the large quantity of molecules with biological activity that could be explored. However, available information regarding the biotechnological importance of species within Ganoderma, other than G. lucidum, is quite limited. Genomic studies of little-known species can contribute to the knowledge thereof, as well as the search for metabolic pathways and the identification of genes which code for proteins that may be of biotechnological relevance. Therefore, the objective of the present study was to obtain the G. australe genome, through the use of new sequencing technologies. Genomic DNA from G. australe was…

Read More »

Tuesday, April 21, 2020

Whole-genome sequence of Arthrinium phaeospermum, a globally distributed pathogenic fungus.

Arthrinium phaeospermum (Corda) M.B. Ellis is a globally distributed pathogenic fungus with a wide host range; its hosts include not only plants, but also humans and animals. This study aimed to develop genomic resources for A. phaeospermum to provide solid data and a theoretical basis for further studies of its pathogenesis, transcriptomics, proteomics, metabolomics and RNA genomics. The genome was obtained from the mycelia of the strain AP-Z13 using a combination of analyses with the high-throughput Illumina HiSeq 4000 system and PacBio RSII LongRead sequencing platform. Functional annotation was performed by BLASTing protein sequences against those in different publicly available…

Read More »

Tuesday, April 21, 2020

Comparative genomics reveals unique wood-decay strategies and fruiting body development in the Schizophyllaceae.

Agaricomycetes are fruiting body-forming fungi that produce some of the most efficient enzyme systems to degrade wood. Despite decades-long interest in their biology, the evolution and functional diversity of both wood-decay and fruiting body formation are incompletely known. We performed comparative genomic and transcriptomic analyses of wood-decay and fruiting body development in Auriculariopsis ampla and Schizophyllum commune (Schizophyllaceae), species with secondarily simplified morphologies, an enigmatic wood-decay strategy and weak pathogenicity to woody plants. The plant cell wall-degrading enzyme repertoires of Schizophyllaceae are transitional between those of white rot species and less efficient wood-degraders such as brown rot or mycorrhizal fungi.…

Read More »

Tuesday, April 21, 2020

Whole genome sequence of first Candida auris strain, isolated in Russia.

Candida auris is an emergent yeast pathogen, easily transmissible between patients and with high percent of multidrug resistant strains. Here we present a draft genome sequence of the first known Russian strain of C. auris, isolated from a case of candidemia. The strain clustered within South Asian C. auris clade and seemingly represented an independent event of dissemination from the original species range. Observed fluconazole resistance was probably due to F105L and K143R mutations in ERG11. © The Author(s) 2019. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology.

Read More »

Tuesday, April 21, 2020

Updated assembly resource of Phytophthora ramorum Pr102 isolate incorporating long reads from PacBio sequencing.

The NA1 clonal lineage of Phytophthora ramorum is responsible for Sudden Oak Death, an epidemic that has devastated California’s coastal forest ecosystems. An NA1 isolate Pr102 derived from coast live oak in California was previously sequenced and reported with 65 Mb assembly containing 12 Mb gaps in 2576 scaffolds. Here we report an improved 70 Mb genome in 1512 scaffolds with 6752 bp gaps after incorporating PacBio P5-C3 longreads. This assembly contains 19494 gene models (average gene length 2515 bp) compared to 16134 genes (average gene length of 1673 bp) in the previous version. We predicted 29 new RXLRs and…

Read More »

1 2 3 24

Subscribe for blog updates:

Archives