Menu
September 22, 2019

The repeat structure of two paralogous genes, Yersinia ruckeri invasin (yrInv) and a “Y. ruckeri invasin-like molecule”, (yrIlm) sheds light on the evolution of adhesive capacities of a fish pathogen.

Inverse autotransporters comprise the recently identified type Ve secretion system and are exemplified by intimin from enterohaemorrhagic Escherichia coli and invasin from enteropathogenic Yersiniae. These proteins share a common domain architecture and promote bacterial adhesion to host cells. Here, we identified and characterized two putative inverse autotransporter genes in the fish pathogen Yersinia ruckeri NVH_3758, namely yrInv (for Y. ruckeri invasin) and yrIlm (for Y. ruckeri invasin-like molecule). When trying to clone the highly repetitive genes for structural and functional studies, we experienced problems in obtaining PCR products. PCR failures and the highly repetitive nature of inverse autotransporters prompted us to sequence the genome of Y. ruckeri NVH_3758 using PacBio sequencing, which produces some of the longest average read lengths available in the industry at this moment. According to our sequencing data, YrIlm is composed of 2603 amino acids (7812bp) and has a molecular mass of 256.4kDa. Based on the new genome information, we performed PCR analysis on four non-sequenced Y. ruckeri strains as well as the sequenced. Y. ruckeri type strain. We found that the genes are variably present in the strains, and that the length of yrIlm, when present, also varies. In addition, the length of the gene product for all strains, including the type strain, was much longer than expected based on deposited sequences. The internal repeats of the yrInv gene product are highly diverged, but represent the same bacterial immunoglobulin-like domains as in yrIlm. Using qRT-PCR, we found that yrIlm and yrInv are differentially expressed under conditions relevant for pathogenesis. In addition, we compared the genomic context of both genes in the newly sequenced Y. ruckeri strain to all available PacBio-sequenced Y. ruckeri genomes, and found indications of recent events of horizontal gene transfer. Taken together, this study demonstrates and highlights the power of Single Molecule Real-Time technology for sequencing highly repetitive proteins, and sheds light on the genetic events that gave rise to these highly repetitive genes in a commercially important fish pathogen. Copyright © 2017 Elsevier Inc. All rights reserved.


September 22, 2019

Multi-omics Reveals the Lifestyle of the Acidophilic, Mineral-Oxidizing Model Species Leptospirillum ferriphilumT.

Leptospirillum ferriphilum plays a major role in acidic, metal-rich environments, where it represents one of the most prevalent iron oxidizers. These milieus include acid rock and mine drainage as well as biomining operations. Despite its perceived importance, no complete genome sequence of the type strain of this model species is available, limiting the possibilities to investigate the strategies and adaptations that Leptospirillum ferriphilum DSM 14647T (here referred to as Leptospirillum ferriphilumT) applies to survive and compete in its niche. This study presents a complete, circular genome of Leptospirillum ferriphilumT obtained by PacBio single-molecule real-time (SMRT) long-read sequencing for use as a high-quality reference. Analysis of the functionally annotated genome, mRNA transcripts, and protein concentrations revealed a previously undiscovered nitrogenase cluster for atmospheric nitrogen fixation and elucidated metabolic systems taking part in energy conservation, carbon fixation, pH homeostasis, heavy metal tolerance, the oxidative stress response, chemotaxis and motility, quorum sensing, and biofilm formation. Additionally, mRNA transcript counts and protein concentrations were compared between cells grown in continuous culture using ferrous iron as the substrate and those grown in bioleaching cultures containing chalcopyrite (CuFeS2). Adaptations of Leptospirillum ferriphilumT to growth on chalcopyrite included the possibly enhanced production of reducing power, reduced carbon dioxide fixation, as well as elevated levels of RNA transcripts and proteins involved in heavy metal resistance, with special emphasis on copper efflux systems. Finally, the expression and translation of genes responsible for chemotaxis and motility were enhanced.IMPORTANCELeptospirillum ferriphilum is one of the most important iron oxidizers in the context of acidic and metal-rich environments during moderately thermophilic biomining. A high-quality circular genome of Leptospirillum ferriphilumT coupled with functional omics data provides new insights into its metabolic properties, such as the novel identification of genes for atmospheric nitrogen fixation, and represents an essential step for further accurate proteomic and transcriptomic investigation of this acidophile model species in the future. Additionally, light is shed on adaptation strategies of Leptospirillum ferriphilumT for growth on the copper mineral chalcopyrite. These data can be applied to deepen our understanding and optimization of bioleaching and biooxidation, techniques that present sustainable and environmentally friendly alternatives to many traditional methods for metal extraction. Copyright © 2018 Christel et al.


September 22, 2019

Comparative genomics and transcriptomics analysis-guided metabolic engineering of Propionibacterium acidipropionici for improved propionic acid production.

Acid stress induced by the accumulation of organic acids during the fermentation of propionibacteria is a severe limitation in the microbial production of propionic acid (PA). To enhance the acid resistance of strains, the tolerance mechanisms of cells must first be understood. In this study, comparative genomic and transcriptomic analyses were conducted on wild-type and acid-tolerant Propionibacterium acidipropionici to reveal the microbial response of cells to acid stress during fermentation. Combined with the results of previous proteomic and metabolomic studies, several potential acid-resistance mechanisms of P. acidipropionici were analyzed. Energy metabolism and transporter activity of cells were regulated to maintain pH homeostasis by balancing transmembrane transport of protons and ions; redundant protons were eliminated by enhancing the metabolism of certain amino acids for a relatively stable intracellular microenvironment; and protective mechanism of macromolecules were also induced to repair damage to proteins and DNA by acids. Transcriptomic data indicated that the synthesis of acetate and lactate were undesirable in the acid-resistant mutant, the expression of which was 2.21-fold downregulated. In addition, metabolomic data suggested that the accumulation of lactic acid and acetic acid reduced the carbon flow to PA and led to a decrease in pH. On this basis, we propose a metabolic engineering strategy to regulate the synthesis of lactic acid and acetic acid that will reduce by-products significantly and increase the PA yield by 12.2% to 10.31?±?0.84?g/g DCW. Results of this study provide valuable guidance to understand the response of bacteria to acid stress and to construct microbial cell factories to produce organic acids by combining systems biology technologies with synthetic biology tools.© 2017 Wiley Periodicals, Inc.


September 22, 2019

Molecular characterization of NBS-LRR genes in the soybean Rsv3 locus reveals several divergent alleles that likely confer resistance to the soybean mosaic virus.

The divergence patterns of NBS – LRR genes in soybean Rsv3 locus were deciphered and several divergent alleles ( NBS_C, NBS_D and Columbia NBS_E ) were identified as the likely functional candidates of Rsv3. The soybean Rsv3 locus, which confers resistance to the soybean mosaic virus (SMV), has been previously mapped to a region containing five nucleotide binding site-leucine-rich repeats (NBS-LRR) genes (referred to as nbs_A-E) in Williams 82. In resistant cultivars, however, the number of NBS-LRR genes in this region and their divergence from susceptible alleles remain unclear. In the present study, we constructed and screened a bacterial artificial chromosome (BAC) library for an Rsv3-possessing cultivar, Zaoshu 18. Sequencing two positive BAC inserts on the Rsv3 locus revealed that Zaoshu 18 possesses the same gene content and order as Williams 82, but two of the NBS-LRR genes, NBS_C and NBS_D, exhibit distinct features that were not observed in the Williams 82 alleles. Obtaining these NBS-LRR genes from eight additional cultivars demonstrated that the NBS_A-D genes diverged into two different alleles: the nbs_A-D alleles were associated with the rsv3-type cultivars, whereas the NBS_A-D alleles were associated with the Rsv3-possessing cultivars. For the NBS_E gene, the cultivar Columbia possesses an allele (NBS_E) that differed from that in Zaoshu 18 and rsv3-type cultivars (nbs_E). Exchanged fragments were further detected on alleles of the NBS_C-E genes, suggesting that recombination is a major force responsible for allele divergence. Also, the LRR domains of the NBS_C-E genes exhibited extremely strong signals of positive selection. Overall, the divergence patterns of the NBS-LRR genes in Rsv3 locus elucidated by this study indicate that not only NBS_C but also NBS_D and Columbia NBS_E are likely functional alleles that confer resistance to SMV.


September 22, 2019

Genomes of 13 domesticated and wild rice relatives highlight genetic conservation, turnover and innovation across the genus Oryza.

The genus Oryza is a model system for the study of molecular evolution over time scales ranging from a few thousand to 15 million years. Using 13 reference genomes spanning the Oryza species tree, we show that despite few large-scale chromosomal rearrangements rapid species diversification is mirrored by lineage-specific emergence and turnover of many novel elements, including transposons, and potential new coding and noncoding genes. Our study resolves controversial areas of the Oryza phylogeny, showing a complex history of introgression among different chromosomes in the young ‘AA’ subclade containing the two domesticated species. This study highlights the prevalence of functionally coupled disease resistance genes and identifies many new haplotypes of potential use for future crop protection. Finally, this study marks a milestone in modern rice research with the release of a complete long-read assembly of IR 8 ‘Miracle Rice’, which relieved famine and drove the Green Revolution in Asia 50 years ago.


September 22, 2019

Genomics: Next regeneration sequencing for reference genomes.

Various species have remarkable abilities to regenerate body parts or entire organisms after injury, but a comprehensive understanding of the molecular basis of regeneration mech- anisms will require detailed genomic resources. Two new studies report high-quality reference genomes for two classic regeneration model organ- isms with contrasting genome sizes: the axolotl salamander Ambystoma mexicanum and the planarium flatworm Schmidtea mediterranea.


September 22, 2019

A hybrid-hierarchical genome assembly strategy to sequence the invasive golden mussel Limnoperna fortunei.

For more than 25 years, the golden mussel Limnoperna fortunei has aggressively invaded South American freshwaters, having travelled more than 5,000 km upstream across five countries. Along the way, the golden mussel has outcompeted native species and economically harmed aquaculture, hydroelectric powers, and ship transit. We have sequenced the complete genome of the golden mussel to understand the molecular basis of its invasiveness and search for ways to control it.We assembled the 1.6 Gb genome into 20548 scaffolds with an N50 length of 312 Kb using a hybrid and hierarchical assembly strategy from short and long DNA reads and transcriptomes. A total of 60717 coding genes were inferred from a customized transcriptome-trained AUGUSTUS run. We also compared predicted protein sets with those of complete molluscan genomes, revealing an exacerbation of protein-binding domains in L. fortunei. Conclusions: We built one of the best bivalve genome assemblies available using a cost-effective approach using Illumina pair-end, mate pair, and PacBio long reads. We expect that the continuous and careful annotation of L. fortunei’s genome will contribute to the investigation of bivalve genetics, evolution, and invasiveness, as well as to the development of biotechnological tools for aquatic pest control.© The Authors 2017. Published by Oxford University Press.


September 22, 2019

Topical antibiotic use coselects for the carriage of mobile genetic elements conferring resistance to unrelated antimicrobials in Staphylococcus aureus.

Topical antibiotics, such as mupirocin and fusidic acid, are commonly used in the prevention and treatment of skin infections, particularly those caused by staphylococci. However, the widespread use of these agents is associated with increased resistance to these agents, potentially limiting their efficacy. Of particular concern is the observation that resistance to topical antibiotics is often associated with multidrug resistance, suggesting that topical antibiotics may play a role in the emergence of multidrug-resistant (MDR) strains. New Zealand (NZ) has some of the highest globally recorded rates of topical antibiotic usage and resistance. Using a combination of Pacific Biosciences single-molecule real-time (SMRT) whole-genome sequencing, Illumina short-read sequencing, and Bayesian phylogenomic modeling on 118 new multilocus sequence type 1 (ST1) communityStaphylococcus aureusisolates from New Zealand and 61 publically available international ST1 genome sequences, we demonstrate a strong correlation between the clinical introduction of topical antibiotics and the emergence of MDR ST1S. aureusWe also providein vitroexperimental evidence showing that exposure to topical antibiotics can lead to the rapid selection of MDRS. aureusisolates carrying plasmids that confer resistance to multiple unrelated antibiotics, from within a mixed population of competitor strains. These findings have important implications regarding the impact of the indiscriminate use of topical antibiotics. Copyright © 2018 Carter et al.


September 22, 2019

Mutations in genes encoding Penicillin-binding proteins and efflux pumps play a role in ß-lactam resistance in Helicobacter cinaedi.

ß-Lactams are often used to treatHelicobacter cinaediinfections; however, the mechanism underlying ß-lactam resistance is unknown. In this study, we investigated ß-lactam resistance in anH. cinaedistrain, MRY12-0051 (MICs of amoxicillin [AMX] and ceftriaxone [CRO], 32 and 128 µg/ml; obtained from human feces). Based on a comparative whole-genome analysis of MRY12-0051 and the CRO-susceptibleH. cinaedistrain MRY08-1234 (MICs of AMX and CRO, 1 and 4 µg/ml; obtained from human blood), we identified five mutations in genes encoding penicillin-binding proteins (PBPs), including two inpbpA, one inpbp2, and two inftsITransformation and penicillin binding assays indicated that CRO resistance was mainly associated with mutations inpbpA; mutations inftsIalso led to increased resistance to AMX. Knocking outcmeBandcmeD, which encode resistance-nodulation-division-type efflux pump components, inH. cinaeditype strain CCUG18818 (AMX MIC, 4 to 8 µg/ml) resulted in 8- and 64-fold decreases, respectively, in the AMX MIC. Hence, MICs of AMX inH. cinaedibecome similar to those ofHelicobacter pyloriisolates in the absence ofcmeDIn conclusion, the difference in susceptibility to ß-lactams betweenH. pyloriandH. cinaediis explained by differences in efflux pump components. Mutations inpbpAare the primary determinant of high resistance to ß-lactams inH. cinaedi. Copyright © 2018 American Society for Microbiology.


September 22, 2019

The putative functions of lysogeny in mediating the survivorship of Escherichia coli in seawater and marine sediment.

Escherichia coli colonizes various body parts of animal hosts as a commensal and a pathogen. It can also persist in the external environment in the absence of fecal pollution. It remains unclear how this species has evolved to adapt to such contrasting habitats. Lysogeny plays pivotal roles in the diversification of the phenotypic and ecologic characters of E. coli as a symbiont. We hypothesized that lysogeny could also confer fitness to survival in the external environment. To test this hypothesis, we used the induced phages of an E. coli strain originating from marine sediment to infect a fecal E. coli strain to obtain an isogenic lysogen of the latter. The three strains were tested for survivorship in microcosms of seawater, marine sediment and sediment interstitial water as well as swimming motility, glycogen accumulation, biofilm formation, substrate utilization and stress resistance. The results indicate that lysogenic infection led to tractable changes in many of the ecophysiological attributes tested. Particularly, the lysogen had better survivorship in the microcosms and had a substrate utilization profile resembling the sediment strain more than the wild type fecal strain. Our findings provide new insights into the understanding of how E. coli survives in the natural environment.© FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.


September 22, 2019

Cytogenomic analysis of several repetitive DNA elements in turbot (Scophthalmus maximus).

Repetitive DNA plays a fundamental role in the organization, size and evolution of eukaryotic genomes. The sequencing of the turbot revealed a small and compact genome, as in all flatfish studied to date. The assembly of repetitive regions is still incomplete because it is difficult to correctly identify their position, number and array. The combination of classical cytogenetic techniques along with high quality sequencing is essential to increase the knowledge of the structure and composition of these sequences and, thus, of the structure and function of the whole genome. In this work, the in silico analysis of H1 histone, 5S rDNA, telomeric and Rex repetitive sequences, was compared to their chromosomal mapping by fluorescent in situ hybridization (FISH), providing a more comprehensive picture of these elements in the turbot genome. FISH assays confirmed the location of H1 in LG8; 5S rDNA in LG4 and LG6; telomeric sequences at the end of all chromosomes whereas Rex elements were dispersed along most chromosomes. The discrepancies found between both approaches could be related to the sequencing methodology applied in this species and also to the resolution limitations of the FISH technique. Turbot cytogenomic analyses have proven to add new chromosomal landmarks in the karyotype of this species, representing a powerful tool to investigate targeted genomic sequences or regions in the genetic and physical maps of this species. Copyright © 2017 Elsevier B.V. All rights reserved.


September 22, 2019

By land, air, and sea: hemipteran diversity through the genomic lens

Thanks to a recent spate of sequencing projects, the Hemiptera are the first hemimetabolous insect order to achieve a critical mass of species with sequenced genomes, establishing the basis for comparative genomics of the bugs. However, as the most speciose hemimetabolous order, there is still a vast swathe of the hemipteran phylogeny that awaits genomic representation across subterranean, terrestrial, and aquatic habitats, and with lineage-specific and developmentally plastic cases of both wing polyphenisms and flightlessness. In this review, we highlight opportunities for taxonomic sampling beyond obvious pest species candidates, motivated by intriguing biological features of certain groups as well as the rich research tradition of ecological, physiological, developmental, and particularly cytogenetic investigation that spans the diversity of the Hemiptera.


September 22, 2019

Metabolic versatility of a novel N2-fixing Alphaproteobacterium isolated from a marine oxygen minimum zone.

The N2-fixing (diazotrophic) community in marine ecosystems is dominated by non-cyanobacterial microorganisms. Yet, very little is known about their identity, function and ecological relevance due to a lack of cultured representatives. Here we report a novel heterotrophic diazotroph isolated from the oxygen minimum zone (OMZ) off Peru. The new species belongs to the genus Sagittula (Rhodobacteraceae, Alphaproteobacteria) and its capability to fix N2was confirmed in laboratory experiments. Genome sequencing revealed that it is a strict heterotroph with a high versatility in substrate utilization and energy acquisition mechanisms. Pathways for sulfide oxidation and nitrite reduction to nitrous oxide are encoded in the genome and might explain the presence throughout the Peruvian OMZ. The genome further indicates that this novel organism could be in direct interaction with other microbes or particles. NanoSIMS analyses were used to compare the metabolic potential of S. castanea with single-cell activity in situ; however, N2fixation by this diazotroph could not be detected at the isolation site. While the biogeochemical impact of S. castanea is yet to be resolved, its abundance and widespread distribution suggests that its potential to contribute to the marine N input could be significant at a larger geographical scale.© 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.


September 22, 2019

Comparative genomics reveals new single-nucleotide polymorphisms that can assist in identification of adherent-invasive Escherichia coli.

Adherent-invasive Escherichia coli (AIEC) have been involved in Crohn’s disease (CD). Currently, AIEC are identified by time-consuming techniques based on in vitro infection of cell lines to determine their ability to adhere to and invade intestinal epithelial cells as well as to survive and replicate within macrophages. Our aim was to find signature sequences that can be used to identify the AIEC pathotype. Comparative genomics was performed between three E. coli strain pairs, each pair comprised one AIEC and one non-AIEC with identical pulsotype, sequence type and virulence gene carriage. Genetic differences were further analysed in 22 AIEC and 28 non-AIEC isolated from CD patients and controls. The strain pairs showed similar genome structures, and no gene was specific to AIEC. Three single nucleotide polymorphisms displayed different nucleotide distributions between AIEC and non-AIEC, and four correlated with increased adhesion and/or invasion indices. Here, we present a classification algorithm based on the identification of three allelic variants that can predict the AIEC phenotype with 84% accuracy. Our study corroborates the absence of an AIEC-specific genetic marker distributed across all AIEC strains. Nonetheless, point mutations putatively involved in the AIEC phenotype can be used for the molecular identification of the AIEC pathotype.


September 22, 2019

The sea lamprey germline genome provides insights into programmed genome rearrangement and vertebrate evolution.

The sea lamprey (Petromyzon marinus) serves as a comparative model for reconstructing vertebrate evolution. To enable more informed analyses, we developed a new assembly of the lamprey germline genome that integrates several complementary data sets. Analysis of this highly contiguous (chromosome-scale) assembly shows that both chromosomal and whole-genome duplications have played significant roles in the evolution of ancestral vertebrate and lamprey genomes, including chromosomes that carry the six lamprey HOX clusters. The assembly also contains several hundred genes that are reproducibly eliminated from somatic cells during early development in lamprey. Comparative analyses show that gnathostome (mouse) homologs of these genes are frequently marked by polycomb repressive complexes (PRCs) in embryonic stem cells, suggesting overlaps in the regulatory logic of somatic DNA elimination and bivalent states that are regulated by early embryonic PRCs. This new assembly will enhance diverse studies that are informed by lampreys’ unique biology and evolutionary/comparative perspective.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.