ß-Lactams are often used to treatHelicobacter cinaediinfections; however, the mechanism underlying ß-lactam resistance is unknown. In this study, we investigated ß-lactam resistance in anH. cinaedistrain, MRY12-0051 (MICs of amoxicillin [AMX] and ceftriaxone [CRO], 32 and 128 µg/ml; obtained from human feces). Based on a comparative whole-genome analysis of MRY12-0051 and the CRO-susceptibleH. cinaedistrain MRY08-1234 (MICs of AMX and CRO, 1 and 4 µg/ml; obtained from human blood), we identified five mutations in genes encoding penicillin-binding proteins (PBPs), including two inpbpA, one inpbp2, and two inftsITransformation and penicillin binding assays indicated that CRO resistance was mainly associated with mutations inpbpA; mutations inftsIalso led to increased resistance to AMX. Knocking outcmeBandcmeD, which encode resistance-nodulation-division-type efflux pump components, inH. cinaeditype strain CCUG18818 (AMX MIC, 4 to 8 µg/ml) resulted in 8- and 64-fold decreases, respectively, in the AMX MIC. Hence, MICs of AMX inH. cinaedibecome similar to those ofHelicobacter pyloriisolates in the absence ofcmeDIn conclusion, the difference in susceptibility to ß-lactams betweenH. pyloriandH. cinaediis explained by differences in efflux pump components. Mutations inpbpAare the primary determinant of high resistance to ß-lactams inH. cinaedi. Copyright © 2018 American Society for Microbiology.
Journal: Antimicrobial agents and chemotherapy
DOI: 10.1128/AAC.02036-17
Year: 2018