Menu
April 21, 2020

Relocation of Tn2009 and characterization of an ABGRI3-2 from re-sequenced genome sequence of Acinetobacter baumannii MDR-ZJ06.

Sir,Acinetobacter baumannii is becoming an important opportunistic Gram-negative pathogen and has shown extensive MDR to most first-line antibiotics in recent years. The acquisition of the MDR phenotype is a determining factor for the success of A. baumannii. For example, blaOXA-23is the most common acquired gene for car- bapenem resistance, and it is acquired via mobile element. Our previous studies identified six clones (clones A–F) of imipenem- resistant A. baumannii strains isolated from 16 cities in 2005 in China and clone C was the dominant clone in various cities.1 One isolate of clone C, MDR-ZJ06, which belonged to global clone 2, was sequenced by the 454 Genome Sequencer FLX system, Illumina sequencer and Sanger sequencing. The blaOXA-23 of MDR-ZJ06 was located in Tn2009, which was initially named as part of the analysis of MDR-ZJ06 and was mostly reported in isolates from China. In this study, we present the revised complete genome sequence of A. baumannii MDR-ZJ06, which is widespread in China. Materials and methods are available as Supplementary data at JAC Online. The sequence data for the revised genome of A. baumannii MDR-ZJ06 have been deposited in GenBank under the accession number CP001937.2.


April 21, 2020

Isarubrolones Containing a Pyridooxazinium Unit from Streptomyces as Autophagy Activators.

Isarubrolones are bioactive polycyclic tropoloalkaloids from Streptomyces. Three new isarubrolones (2-4), together with the known isarubrolone C (1) and isatropolones A (5) and C (6, 3( R)-hydroxyisatropolone A), were identified from Streptomyces sp. CPCC 204095. The structures of these compounds were determined using a combination of mass spectrometry, 1D and 2D NMR spectroscopy, and ECD. Compounds 3 and 4 feature a pyridooxazinium unit, which is rarely seen in natural products. Compound 6 could conjugate with amino acids or amines to expand the structural diversity of isarubrolones with a pentacyclic or hexacyclic core. Importantly, 1 and 3-6 were found to induce complete autophagy.


April 21, 2020

Blast Fungal Genomes Show Frequent Chromosomal Changes, Gene Gains and Losses, and Effector Gene Turnover.

Pyricularia is a fungal genus comprising several pathogenic species causing the blast disease in monocots. Pyricularia oryzae, the best-known species, infects rice, wheat, finger millet, and other crops. As past comparative and population genomics studies mainly focused on isolates of P. oryzae, the genomes of the other Pyricularia species have not been well explored. In this study, we obtained a chromosomal-level genome assembly of the finger millet isolate P. oryzae MZ5-1-6 and also highly contiguous assemblies of Pyricularia sp. LS, P. grisea, and P. pennisetigena. The differences in the genomic content of repetitive DNA sequences could largely explain the variation in genome size among these new genomes. Moreover, we found extensive gene gains and losses and structural changes among Pyricularia genomes, including a large interchromosomal translocation. We searched for homologs of known blast effectors across fungal taxa and found that most avirulence effectors are specific to Pyricularia, whereas many other effectors share homologs with distant fungal taxa. In particular, we discovered a novel effector family with metalloprotease activity, distinct from the well-known AVR-Pita family. We predicted 751 gene families containing putative effectors in 7 Pyricularia genomes and found that 60 of them showed differential expression in the P. oryzae MZ5-1-6 transcriptomes obtained under experimental conditions mimicking the pathogen infection process. In summary, this study increased our understanding of the structural, functional, and evolutionary genomics of the blast pathogen and identified new potential effector genes, providing useful data for developing crops with durable resistance. © The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.


April 21, 2020

Systematic evasion of the restriction-modification barrier in bacteria.

Bacteria that are recalcitrant to genetic manipulation using modern in vitro techniques are termed genetically intractable. Genetic intractability is a fundamental barrier to progress that hinders basic, synthetic, and translational microbiology research and development beyond a few model organisms. The most common underlying causes of genetic intractability are restriction-modification (RM) systems, ubiquitous defense mechanisms against xenogeneic DNA that hinder the use of genetic approaches in the vast majority of bacteria and exhibit strain-level variation. Here, we describe a systematic approach to overcome RM systems. Our approach was inspired by a simple hypothesis: if a synthetic piece of DNA lacks the highly specific target recognition motifs for a host’s RM systems, then it is invisible to these systems and will not be degraded during artificial transformation. Accordingly, in this process, we determine the genome and methylome of an individual bacterial strain and use this information to define the bacterium’s RM target motifs. We then synonymously eliminate RM targets from the nucleotide sequence of a genetic tool in silico, synthesize an RM-silent “SyngenicDNA” tool, and propagate the tool as minicircle plasmids, termed SyMPL (SyngenicDNA Minicircle Plasmid) tools, before transformation. In a proof-of-principle of our approach, we demonstrate a profound improvement (five orders of magnitude) in the transformation of a clinically relevant USA300 strain of Staphylococcus aureus This stealth-by-engineering SyngenicDNA approach is effective, flexible, and we expect in future applications could enable microbial genetics free of the restraints of restriction-modification barriers.Copyright © 2019 the Author(s). Published by PNAS.


April 21, 2020

Identifying the Biosynthetic Gene Cluster for Triacsins with an N-Hydroxytriazene Moiety.

Triacsins are a family of natural products having in common an N-hydroxytriazene moiety not found in any other known secondary metabolites. Though many studies have examined the biological activity of triacsins in lipid metabolism, their biosynthesis has remained unknown. Here we report the identification of the triacsin biosynthetic gene cluster in Streptomyces aureofaciens ATCC 31442. Bioinformatic analysis of the gene cluster led to the discovery of the tacrolimus producer Streptomyces tsukubaensis NRRL 18488 as a new triacsin producer. In addition to targeted gene disruption to identify necessary genes for triacsin production, stable isotope feeding was performed in vivo to advance the understanding of N-hydroxytriazene biosynthesis. © 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.


April 21, 2020

Chloroplast genome of Dalbergia cochinchinensis (Fabaceae), a rare and Endangered rosewood species in Southeast Asia

Dalbergia cochinchinensis is an tree species in Southeast Asia, its wood and wood products are incred- ibly valuable and are also of important medicinal value. In this study, its chloroplast genome was char- acterized using next generation Illumina pair-end and Pacbio sequencing dataset. The whole genome was 156,576bp in length and contains a pair of 25,682bp inverted repeat regions, which were sepa- rated by a large single copy region and a small single copy region of 85,886 and 19,326bp in length, respectively. The cp genome contained 111 genes, including 77 protein-coding genes, 30 tRNAs and 4 rRNAs. A neighbor-joining phylogenetic analysis suggested D. cochinchinensis, which belonged to Dalbergieae, Fabaceae.


April 21, 2020

Metagenomic assembly through the lens of validation: recent advances in assessing and improving the quality of genomes assembled from metagenomes.

Metagenomic samples are snapshots of complex ecosystems at work. They comprise hundreds of known and unknown species, contain multiple strain variants and vary greatly within and across environments. Many microbes found in microbial communities are not easily grown in culture making their DNA sequence our only clue into their evolutionary history and biological function. Metagenomic assembly is a computational process aimed at reconstructing genes and genomes from metagenomic mixtures. Current methods have made significant strides in reconstructing DNA segments comprising operons, tandem gene arrays and syntenic blocks. Shorter, higher-throughput sequencing technologies have become the de facto standard in the field. Sequencers are now able to generate billions of short reads in only a few days. Multiple metagenomic assembly strategies, pipelines and assemblers have appeared in recent years. Owing to the inherent complexity of metagenome assembly, regardless of the assembly algorithm and sequencing method, metagenome assemblies contain errors. Recent developments in assembly validation tools have played a pivotal role in improving metagenomics assemblers. Here, we survey recent progress in the field of metagenomic assembly, provide an overview of key approaches for genomic and metagenomic assembly validation and demonstrate the insights that can be derived from assemblies through the use of assembly validation strategies. We also discuss the potential for impact of long-read technologies in metagenomics. We conclude with a discussion of future challenges and opportunities in the field of metagenomic assembly and validation. © The Author 2017. Published by Oxford University Press.


April 21, 2020

Copy-number variants in clinical genome sequencing: deployment and interpretation for rare and undiagnosed disease.

Current diagnostic testing for genetic disorders involves serial use of specialized assays spanning multiple technologies. In principle, genome sequencing (GS) can detect all genomic pathogenic variant types on a single platform. Here we evaluate copy-number variant (CNV) calling as part of a clinically accredited GS test.We performed analytical validation of CNV calling on 17 reference samples, compared the sensitivity of GS-based variants with those from a clinical microarray, and set a bound on precision using orthogonal technologies. We developed a protocol for family-based analysis of GS-based CNV calls, and deployed this across a clinical cohort of 79 rare and undiagnosed cases.We found that CNV calls from GS are at least as sensitive as those from microarrays, while only creating a modest increase in the number of variants interpreted (~10 CNVs per case). We identified clinically significant CNVs in 15% of the first 79 cases analyzed, all of which were confirmed by an orthogonal approach. The pipeline also enabled discovery of a uniparental disomy (UPD) and a 50% mosaic trisomy 14. Directed analysis of select CNVs enabled breakpoint level resolution of genomic rearrangements and phasing of de novo CNVs.Robust identification of CNVs by GS is possible within a clinical testing environment.


April 21, 2020

Characterization and phylogenetic analysis of the complete chloroplast genome sequence of Costus viridis (Costaceae)

The first complete chloroplast genome of Costus viridis (Costaceae) was reported in the current study. The C. viridis genome was 168,966bp in length and comprised a pair of inverted repeat (IR) regions of 29,166bp each, a large single-copy (LSC) region of 92,189bp, and a small single-copy (SSC) region of 18,445bp. It encoded 133 genes, including 87 protein-coding genes (79 PCG species), 38 tRNA genes (28 tRNA species), and eight rRNA genes (four rRNA species). The overall AT content was 63.75%. Phylogenetic analysis showed that C. viridis was closely related to species Costus osae within the genus Costus in family Costaceae.


April 21, 2020

Systematic Identification of Pathogenic Streptomyces sp. AMCC400023 That Causes Common Scab and Genomic Analysis of Its Pathogenicity Island.

Potato scab, a serious soilborne disease caused by Streptomyces spp., occurs in potato-growing areas worldwide and results in severe economic losses. In this paper, the pathogenicity of Streptomyces strain AMCC400023, isolated from potato scabs in Hebei Province, China, was verified systematically by the radish seedling test, the potato tuber slice assay, the potted back experiment, and the detection of phytotoxin thaxtomin A. Morphological, physiological, and biochemical characteristics were determined, and the 16S ribosomal RNA analyses of Streptomyces sp. AMCC400023 were carried out. To obtain the accurate taxonomic status of the pathogen strain, the whole genome was sequenced, and the phylogenetic tree among 31 Streptomyces genomes was formed. The average nucleotide identity (ANI) and in silico DNA-DNA hybridization (isDDH) were analyzed, and at the same time, the toxicity-related genes between Streptomyces sp. AMCC400023 and Streptomyces scabiei were compared, all based on the whole-genome level. All of the data supported that, instead of a member of S. scabiei, test strain Streptomyces sp. AMCC400023 was a distinct phytopathogen of potato common scab, which had a relatively close relationship with S. scabiei while separating clearly from S. scabiei at least in the species level of taxonomic status. The complete pathogenicity island (PAI) composition of Streptomyces sp. AMCC400023 was identified, which contained a toxin region and a colonization region. It was conjectured that the PAI of Streptomyces sp. AMCC400023 might be directly or indirectly acquired from S. scabiei 87-22 by horizontal gene transfer, or at the very least, there was a very close homologous relationship between the two pathogens as indicated by a series of analyses, such as phylogenetic relationships among 31 Streptomyces species, ANI and isDDH analyses, PAI structure mapping, thaxtomin A synthetic gene cluster tree construction, and most important, the collinearity analysis at the genome level.


April 21, 2020

Real time monitoring of Aeromonas salmonicida evolution in response to successive antibiotic therapies in a commercial fish farm.

Our ability to predict evolutionary trajectories of pathogens in response to antibiotic pressure is one of the promising leverage to fight against the present antibiotic resistance worldwide crisis. Yet, few studies tackled this question in situ at the outbreak level, due to the difficulty to link a given pathogenic clone evolution with its precise antibiotic exposure over time. In this study, we monitored the real-time evolution of an Aeromonas salmonicida clone in response to successive antibiotic and vaccine therapies in a commercial fish farm. The clone was responsible for a four-year outbreak of furunculosis within a Recirculating Aquaculture System Salmo salar farm in China, and we reconstructed the precise tempo of mobile genetic elements (MGEs) acquisition events during this period. The resistance profile provided by the acquired MGEs closely mirrored the antibiotics used to treat the outbreak, and we evidenced that two subclonal groups developed similar resistances although unrelated MGE acquisitions. Finally, we also demonstrated the efficiency of vaccination in outbreak management and its positive effect on antibiotic resistance prevalence. Our study provides unprecedented knowledge critical to understand evolutionary trajectories of resistant pathogens outside the laboratory. © 2019 Society for Applied Microbiology and John Wiley & Sons Ltd.


April 21, 2020

Functional genomics of the rapidly replicating bacterium Vibrio natriegens by CRISPRi.

The fast-growing Gram-negative bacterium Vibrio natriegens is an attractive microbial system for molecular biology and biotechnology due to its remarkably short generation time1,2 and metabolic prowess3,4. However, efforts to uncover and utilize the mechanisms underlying its rapid growth are hampered by the scarcity of functional genomic data. Here, we develop a pooled genome-wide clustered regularly interspaced short palindromic repeats (CRISPR) interference (CRISPRi) screen to identify a minimal set of genes required for rapid wild-type growth. Targeting 4,565 (99.7%) of predicted protein-coding genes, our screen uncovered core genes comprising putative essential and growth-supporting genes that are enriched for respiratory pathways. We found that 96% of core genes were located on the larger chromosome 1, with growth-neutral duplicates of core genes located primarily on chromosome 2. Our screen also refines metabolic pathway annotations by distinguishing functional biosynthetic enzymes from those predicted on the basis of comparative genomics. Taken together, this work provides a broadly applicable platform for high-throughput functional genomics to accelerate biological studies and engineering of V. natriegens.


April 21, 2020

Substantial Heritable Variation in Recombination Rate on Multiple Scales in Honeybees and Bumblebees.

Meiotic recombination shuffles genetic variation and promotes correct segregation of chromosomes. Rates of recombination vary on several scales, both within genomes and between individuals, and this variation is affected by both genetic and environmental factors. Social insects have extremely high rates of recombination, although the evolutionary causes of this are not known. Here, we estimate rates of crossovers and gene conversions in 22 colonies of the honeybee, Apis mellifera, and 9 colonies of the bumblebee, Bombus terrestris, using direct sequencing of 299 haploid drone offspring. We confirm that both species have extremely elevated crossover rates, with higher rates measured in the highly eusocial honeybee than the primitively social bumblebee. There are also significant differences in recombination rate between subspecies of honeybee. There is substantial variation in genome-wide recombination rate between individuals of both A. mellifera and B. terrestris and the distribution of these rates overlap between species. A large proportion of interindividual variation in recombination rate is heritable, which indicates the presence of variation in trans-acting factors that influence recombination genome-wide. We infer that levels of crossover interference are significantly lower in honeybees compared to bumblebees, which may be one mechanism that contributes to higher recombination rates in honeybees. We also find a significant increase in recombination rate with distance from the centromere, mirrored by methylation differences. We detect a strong transmission bias due to GC-biased gene conversion associated with noncrossover gene conversions. Our results shed light on the mechanistic causes of extreme rates of recombination in social insects and the genetic architecture of recombination rate variation. Copyright © 2019 by the Genetics Society of America.


April 21, 2020

Mutation of a bHLH transcription factor allowed almond domestication.

Wild almond species accumulate the bitter and toxic cyanogenic diglucoside amygdalin. Almond domestication was enabled by the selection of genotypes harboring sweet kernels. We report the completion of the almond reference genome. Map-based cloning using an F1 population segregating for kernel taste led to the identification of a 46-kilobase gene cluster encoding five basic helix-loop-helix transcription factors, bHLH1 to bHLH5. Functional characterization demonstrated that bHLH2 controls transcription of the P450 monooxygenase-encoding genes PdCYP79D16 and PdCYP71AN24, which are involved in the amygdalin biosynthetic pathway. A nonsynonymous point mutation (Leu to Phe) in the dimerization domain of bHLH2 prevents transcription of the two cytochrome P450 genes, resulting in the sweet kernel trait. Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.


April 21, 2020

Phenotypic and Genomic Analyses of Burkholderia stabilis Clinical Contamination, Switzerland.

A recent hospital outbreak related to premoistened gloves used to wash patients exposed the difficulties of defining Burkholderia species in clinical settings. The outbreak strain displayed key B. stabilis phenotypes, including the inability to grow at 42°C; we used whole-genome sequencing to confirm the pathogen was B. stabilis. The outbreak strain genome comprises 3 chromosomes and a plasmid, sharing an average nucleotide identity of 98.4% with B. stabilis ATCC27515 BAA-67, but with 13% novel coding sequences. The genome lacks identifiable virulence factors and has no apparent increase in encoded antimicrobial drug resistance, few insertion sequences, and few pseudogenes, suggesting this outbreak was an opportunistic infection by an environmental strain not adapted to human pathogenicity. The diversity among outbreak isolates (22 from patients and 16 from washing gloves) is only 6 single-nucleotide polymorphisms, although the genome remains plastic, with large elements stochastically lost from outbreak isolates.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.