Menu
September 22, 2019

Extensive exchange of transposable elements in the Drosophila pseudoobscura group.

As species diverge, so does their transposable element (TE) content. Within a genome, TE families may eventually become dormant due to host-silencing mechanisms, natural selection and the accumulation of inactive copies. The transmission of active copies from a TE families, both vertically and horizontally between species, can allow TEs to escape inactivation if it occurs often enough, as it may allow TEs to temporarily escape silencing in a new host. Thus, the contribution of horizontal exchange to TE persistence has been of increasing interest.Here, we annotated TEs in five species with sequenced genomes from the D. pseudoobscura species group, and curated a set of TE families found in these species. We found that, compared to host genes, many TE families showed lower neutral divergence between species, consistent with recent transmission of TEs between species. Despite these transfers, there are differences in the TE content between species in the group.The TE content is highly dynamic in the D. pseudoobscura species group, frequently transferring between species, keeping TEs active. This result highlights how frequently transposable elements are transmitted between sympatric species and, despite these transfers, how rapidly species TE content can diverge.


September 22, 2019

Sequence analysis of IncA/C and IncI1 plasmids isolated from multidrug-resistant Salmonella Newport using Single-Molecule Real-Time Sequencing.

Multidrug-resistant (MDR) plasmids play an important role in disseminating antimicrobial resistance genes. To elucidate the antimicrobial resistance gene compositions in A/C incompatibility complex (IncA/C) plasmids carried by animal-derived MDR Salmonella Newport, and to investigate the spread mechanism of IncA/C plasmids, this study characterizes the complete nucleotide sequences of IncA/C plasmids by comparative analysis. Complete nucleotide sequencing of plasmids and chromosomes of six MDR Salmonella Newport strains was performed using PacBio RSII. Open reading frames were assigned using prokaryotic genome annotation pipeline (PGAP). To understand genomic diversity and evolutionary relationships among Salmonella Newport IncA/C plasmids, we included three complete IncA/C plasmid sequences with similar backbones from Salmonella Newport and Escherichia coli: pSN254, pAM04528, and peH4H, and additional 200 draft chromosomes. With the exception of canine isolate CVM22462, which contained an additional IncI1 plasmid, each of the six MDR Salmonella Newport strains contained only the IncA/C plasmid. These IncA/C plasmids (including references) ranged in size from 80.1 (pCVM21538) to 176.5?kb (pSN254) and carried various resistance genes. Resistance genes floR, tetA, tetR, strA, strB, sul, and mer were identified in all IncA/C plasmids. Additionally, blaCMY-2 and sugE were present in all IncA/C plasmids, excepting pCVM21538. Plasmid pCVM22462 was capable of being transferred by conjugation. The IncI1 plasmid pCVM22462b in CVM22462 carried blaCMY-2 and sugE. Our data showed that MDR Salmonella Newport strains carrying similar IncA/C plasmids clustered together in the phylogenetic tree using chromosome sequences and the IncA/C plasmids from animal-derived Salmonella Newport contained diverse resistance genes. In the current study, we analyzed genomic diversities and phylogenetic relationships among MDR Salmonella Newport using complete plasmids and chromosome sequences and provided possible spread mechanism of IncA/C plasmids in Salmonella Newport Lineage II.


September 22, 2019

Catabolism of 2-hydroxypyridine by Burkholderia sp. MAK1: a five-gene cluster encoded 2-hydroxypyridine 5-monooxygenase HpdABCDE catalyses the first step of biodegradation.

Microbial degradation of 2-hydroxypyridine usually results in the formation of a blue pigment (nicotine blue). In contrast, the Burkholderia sp. strain MAK1 bacterium utilizes 2-hydroxypyridine without the accumulation of nicotine blue. This scarcely investigated degradation pathway presumably employs 2-hydroxypyridine 5-monooxygenase, an elusive enzyme that has been hypothesized but has yet to be identified or characterized. The isolation of the mutant strain Burkholderia sp. MAK1 ?P5 that is unable to utilize 2-hydroxypyridine has led to the identification of a gene cluster (designated hpd) which is responsible for the degradation of 2-hydroxypyridine. The activity of 2-hydroxypyridine 5-monooxygenase has been assigned to a soluble diiron monooxygenase (SDIMO) encoded by a five-gene cluster (hpdA, hpdB, hpdC, hpdD, and hpdE). A 4.5-kb DNA fragment containing all five genes has been successfully expressed in Burkholderia sp. MAK1 ?P5 cells. We have proved that the recombinant HpdABCDE protein catalyzes the enzymatic turnover of 2-hydroxypyridine to 2,5-dihydroxypyridine. Moreover, we have confirmed that emerging 2,5-dihydroxypyridine is a substrate for HpdF, an enzyme similar to 2,5-dihydroxypyridine 5,6-dioxygenases that are involved in the catabolic pathways of nicotine and nicotinic acid. The proteins and genes identified in this study have allowed the identification of a novel degradation pathway of 2-hydroxypyridine. Our results provide a better understanding of the biodegradation of pyridine derivatives in nature. Also, the discovered 2-hydroxypyridine 5-monooxygenase may be an attractive catalyst for the regioselective synthesis of various N-heterocyclic compounds.IMPORTANCE The degradation pathway of 2-hydroxypyridine without the accumulation of a blue pigment is relatively unexplored, as, to our knowledge, no genetic data related to this process have ever been presented. In this paper, we describe genes and enzymes involved in this little-studied catabolic pathway. This work provides new insights into the metabolism of 2-hydroxypyridine in nature. A broad-range substrate specificity of 2-hydroxypyridine 5-monooxygenase, a key enzyme in the degradation, makes this biocatalyst attractive for the regioselective hydroxylation of pyridine derivatives. Copyright © 2018 American Society for Microbiology.


September 22, 2019

The presence of colistin resistance gene mcr-1 and -3 in ESBL producing Escherichia coli isolated from food in Ho Chi Minh City, Vietnam.

Colistin is indicated for the treatment of multidrug-resistant gram-negative bacterial infections. However, the spread of colistin-resistant bacteria harbouring an mcr gene has become a serious concern. This study investigated local foods in Vietnam for contamination with colistin-resistant bacteria. A total of 261 extended-spectrum ß-lactamase (ESBL)- and AmpC-producing Escherichia coli isolates from 330 meat and seafood products were analysed for colistin susceptibility and the presence of mcr genes. Approximately, 24% (62/261) of ESBL- or AmpC-producing E. coli isolates showed colistin resistance; 97% (60/62) of colistin-resistant isolates harboured mcr-1, whereas 3% (2/62) harboured mcr-3. As the result of plasmid analysis of two strains, both plasmids harbouring mcr-3 revealed that plasmid replicon type was IncFII. Sequencing analysis indicated that an insertion sequence was present near mcr-3, suggesting that IncFII plasmids harbouring mcr-3 could be transferred to other bacterial species by horizontal transfer of the plasmid or transfer with some insertion sequence. In conclusion, ESBL-producing E. coli and AmpC-producing E. coli have acquired colistin resistance because 24% of such isolates show colistin resistance and 3% of the colistin-resistant strains harbour mcr-3. We reported the present of the mcr-3-carrying ESBL-producing E. coli isolated from pork in Vietnam.


September 22, 2019

Genetic diversity of Cryptosporidium hominis in a Bangladeshi community as revealed by whole genome sequencing.

We studied the genetic diversity of Cryptosporidium hominis infections in slum-dwelling infants from Dhaka over a 2-year period. Cryptosporidium hominis infections were common during the monsoon, and were genetically diverse as measured by gp60 genotyping and whole-genome resequencing. Recombination in the parasite was evidenced by the decay of linkage disequilibrium in the genome over <300 bp. Regions of the genome with high levels of polymorphism were also identified. Yet to be determined is if genomic diversity is responsible in part for the high rate of reinfection, seasonality, and varied clinical presentations of cryptosporidiosis in this population.


September 22, 2019

Mycobacterial biomaterials and resources for researchers.

There are many resources available to mycobacterial researchers, including culture collections around the world that distribute biomaterials to the general scientific community, genomic and clinical databases, and powerful bioinformatics tools. However, many of these resources may be unknown to the research community. This review article aims to summarize and publicize many of these resources, thus strengthening the quality and reproducibility of mycobacterial research by providing the scientific community access to authenticated and quality-controlled biomaterials and a wealth of information, analytical tools and research opportunities.


September 22, 2019

Comprehensive analysis of single molecule sequencing-derived complete genome and whole transcriptome of Hyposidra talaca nuclear polyhedrosis virus.

We sequenced the Hyposidra talaca NPV (HytaNPV) double stranded circular DNA genome using PacBio single molecule sequencing technology. We found that the HytaNPV genome is 139,089?bp long with a GC content of 39.6%. It encodes 141 open reading frames (ORFs) including the 37 baculovirus core genes, 25 genes conserved among lepidopteran baculoviruses, 72 genes known in baculovirus, and 7 genes unique to the HytaNPV genome. It is a group II alphabaculovirus that codes for the F protein and lacks the gp64 gene found in group I alphabaculovirus viruses. Using RNA-seq, we confirmed the expression of the ORFs identified in the HytaNPV genome. Phylogenetic analysis showed HytaNPV to be closest to BusuNPV, SujuNPV and EcobNPV that infect other tea pests, Buzura suppressaria, Sucra jujuba, and Ectropis oblique, respectively. We identified repeat elements and a conserved non-coding baculovirus element in the genome. Analysis of the putative promoter sequences identified motif consistent with the temporal expression of the genes observed in the RNA-seq data.


September 22, 2019

Diversity and evolution of the emerging Pandoraviridae family.

With DNA genomes reaching 2.5?Mb packed in particles of bacterium-like shape and dimension, the first two Acanthamoeba-infecting pandoraviruses remained up to now the most complex viruses since their discovery in 2013. Our isolation of three new strains from distant locations and environments is now used to perform the first comparative genomics analysis of the emerging worldwide-distributed Pandoraviridae family. Thorough annotation of the genomes combining transcriptomic, proteomic, and bioinformatic analyses reveals many non-coding transcripts and significantly reduces the former set of predicted protein-coding genes. Here we show that the pandoraviruses exhibit an open pan-genome, the enormous size of which is not adequately explained by gene duplications or horizontal transfers. As most of the strain-specific genes have no extant homolog and exhibit statistical features comparable to intergenic regions, we suggest that de novo gene creation could contribute to the evolution of the giant pandoravirus genomes.


September 22, 2019

Unexpected invasion of miniature inverted-repeat transposable elements in viral genomes

Transposable elements (TEs) are common and often present with high copy numbers in cellular genomes. Unlike in cellular organisms, TEs were previously thought to be either rare or absent in viruses. Almost all reported TEs display only one or two copies per viral genome. In addition, the discovery of pandoraviruses with genomes up to 2.5-Mb emphasizes the need for biologists to rethink the fundamental nature of the relationship between viruses and cellular life.


September 22, 2019

Parallels between experimental and natural evolution of legume symbionts.

The emergence of symbiotic interactions has been studied using population genomics in nature and experimental evolution in the laboratory, but the parallels between these processes remain unknown. Here we compare the emergence of rhizobia after the horizontal transfer of a symbiotic plasmid in natural populations of Cupriavidus taiwanensis, over 10 MY ago, with the experimental evolution of symbiotic Ralstonia solanacearum for a few hundred generations. In spite of major differences in terms of time span, environment, genetic background, and phenotypic achievement, both processes resulted in rapid genetic diversification dominated by purifying selection. We observe no adaptation in the plasmid carrying the genes responsible for the ecological transition. Instead, adaptation was associated with positive selection in a set of genes that led to the co-option of the same quorum-sensing system in both processes. Our results provide evidence for similarities in experimental and natural evolutionary transitions and highlight the potential of comparisons between both processes to understand symbiogenesis.


September 22, 2019

Phylogenomic analysis of Lactobacillus curvatus reveals two lineages distinguished by genes for fermenting plant-derived carbohydrates.

Lactobacillus curvatus is a lactic acid bacterium encountered in many different types of fermented food (meat, seafood, vegetables, and cereals). Although this species plays an important role in the preservation of these foods, few attempts have been made to assess its genomic diversity. This study uses comparative analyses of 13 published genomes (complete or draft) to better understand the evolutionary processes acting on the genome of this species. Phylogenomic analysis, based on a coalescent model of evolution, revealed that the 6,742 sites of single nucleotide polymorphism within the L. curvatus core genome delineate two major groups, with lineage 1 represented by the newly sequenced strain FLEC03, and lineage 2 represented by the type-strain DSM20019. The two lineages could also be distinguished by the content of their accessory genome, which sheds light on a long-term evolutionary process of lineage-dependent genetic acquisition and the possibility of population structure. Interestingly, one clade from lineage 2 shared more accessory genes with strains of lineage 1 than with other strains of lineage 2, indicating recent convergence in carbohydrate catabolism. Both lineages had a wide repertoire of accessory genes involved in the fermentation of plant-derived carbohydrates that are released from polymers of a/ß-glucans, a/ß-fructans, and N-acetylglucosan. Other gene clusters were distributed among strains according to the type of food from which the strains were isolated. These results give new insight into the ecological niches in which L. curvatus may naturally thrive (such as silage or compost heaps) in addition to fermented food.


September 22, 2019

The genome of Rhizophagus clarus HR1 reveals a common genetic basis for auxotrophy among arbuscular mycorrhizal fungi.

Mycorrhizal symbiosis is one of the most fundamental types of mutualistic plant-microbe interaction. Among the many classes of mycorrhizae, the arbuscular mycorrhizae have the most general symbiotic style and the longest history. However, the genomes of arbuscular mycorrhizal (AM) fungi are not well characterized due to difficulties in cultivation and genetic analysis. In this study, we sequenced the genome of the AM fungus Rhizophagus clarus HR1, compared the sequence with the genome sequence of the model species R. irregularis, and checked for missing genes that encode enzymes in metabolic pathways related to their obligate biotrophy.In the genome of R. clarus, we confirmed the absence of cytosolic fatty acid synthase (FAS), whereas all mitochondrial FAS components were present. A KEGG pathway map identified the absence of genes encoding enzymes for several other metabolic pathways in the two AM fungi, including thiamine biosynthesis and the conversion of vitamin B6 derivatives. We also found that a large proportion of the genes encoding glucose-producing polysaccharide hydrolases, that are present even in ectomycorrhizal fungi, also appear to be absent in AM fungi.In this study, we found several new genes that are absent from the genomes of AM fungi in addition to the genes previously identified as missing. Missing genes for enzymes in primary metabolic pathways imply that AM fungi may have a higher dependency on host plants than other biotrophic fungi. These missing metabolic pathways provide a genetic basis to explore the physiological characteristics and auxotrophy of AM fungi.


September 22, 2019

Horizontal transfer and proliferation of Tsu4 in Saccharomyces paradoxus.

Recent evidence suggests that horizontal transfer plays a significant role in the evolution of of transposable elements (TEs) in eukaryotes. Many cases of horizontal TE transfer (HTT) been reported in animals and plants, however surprisingly few examples of HTT have been reported in fungi.Here I report evidence for a novel HTT event in fungi involving Tsu4 in Saccharomyces paradoxus based on (i) unexpectedly high similarity between Tsu4 elements in S. paradoxus and S. uvarum, (ii) a patchy distribution of Tsu4 in S. paradoxus and general absence from its sister species S. cerevisiae, and (iii) discordance between the phylogenetic history of Tsu4 sequences and species in the Saccharomyces sensu stricto group. Available data suggests the HTT event likely occurred somewhere in the Nearctic, Neotropic or Indo-Australian part of the S. paradoxus species range, and that a lineage related to S. uvarum or S. eubayanus was the likely donor species. The HTT event has led to massive proliferation of Tsu4 in the South American lineage of S. paradoxus, which exhibits partial reproductive isolation with other strains of this species because of multiple reciprocal translocations. Full-length Tsu4 elements are associated with both breakpoints of one of these reciprocal translocations.This work shows that comprehensive analysis of TE sequences in essentially-complete genome assemblies derived from long-read sequencing provides new opportunities to detect HTT events in fungi and other organisms. This work also provides support for the hypothesis that HTT and subsequent TE proliferation can induce genome rearrangements that contribute to post-zygotic isolation in yeast.


September 22, 2019

A reference genome of the European beech (Fagus sylvatica L.).

The European beech is arguably the most important climax broad-leaved tree species in Central Europe, widely planted for its valuable wood. Here, we report the 542 Mb draft genome sequence of an up to 300-year-old individual (Bhaga) from an undisturbed stand in the Kellerwald-Edersee National Park in central Germany.Using a hybrid assembly approach, Illumina reads with short- and long-insert libraries, coupled with long Pacific Biosciences reads, we obtained an assembled genome size of 542 Mb, in line with flow cytometric genome size estimation. The largest scaffold was of 1.15 Mb, the N50 length was 145 kb, and the L50 count was 983. The assembly contained 0.12% of Ns. A Benchmarking with Universal Single-Copy Orthologs (BUSCO) analysis retrieved 94% complete BUSCO genes, well in the range of other high-quality draft genomes of trees. A total of 62,012 protein-coding genes were predicted, assisted by transcriptome sequencing. In addition, we are reporting an efficient method for extracting high-molecular-weight DNA from dormant buds, by which contamination by environmental bacteria and fungi was kept at a minimum.The assembled genome will be a valuable resource and reference for future population genomics studies on the evolution and past climate change adaptation of beech and will be helpful for identifying genes, e.g., involved in drought tolerance, in order to select and breed individuals to adapt forestry to climate change in Europe. A continuously updated genome browser and download page can be accessed from beechgenome.net, which will include future genome versions of the reference individual Bhaga, as new sequencing approaches develop.


September 22, 2019

Genome of an allotetraploid wild peanut Arachis monticola: a de novo assembly.

Arachis monticola (2n = 4x = 40) is the only allotetraploid wild peanut within the Arachis genus and section, with an AABB-type genome of ~2.7 Gb in size. The AA-type subgenome is derived from diploid wild peanut Arachis duranensis, and the BB-type subgenome is derived from diploid wild peanut Arachis ipaensis. A. monticola is regarded either as the direct progenitor of the cultivated peanut or as an introgressive derivative between the cultivated peanut and wild species. The large polyploidy genome structure and enormous nearly identical regions of the genome make the assembly of chromosomal pseudomolecules very challenging. Here we report the first reference quality assembly of the A. monticola genome, using a series of advanced technologies. The final whole genome of A. monticola is ~2.62 Gb and has a contig N50 and scaffold N50 of 106.66 Kb and 124.92 Mb, respectively. The vast majority (91.83%) of the assembled sequence was anchored onto the 20 pseudo-chromosomes, and 96.07% of assemblies were accurately separated into AA- and BB- subgenomes. We demonstrated efficiency of the current state of the strategy for de novo assembly of the highly complex allotetraploid species, wild peanut (A. monticola), based on whole-genome shotgun sequencing, single molecule real-time sequencing, high-throughput chromosome conformation capture technology, and BioNano optical genome maps. These combined technologies produced reference-quality genome of the allotetraploid wild peanut, which is valuable for understanding the peanut domestication and evolution within the Arachis genus and among legume crops.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.