Menu
July 7, 2019

IS26-mediated formation of a virulence and resistance plasmid in Salmonella Enteritidis.

To characterize a novel virulence-resistance plasmid pSE380T carried by a Salmonella enterica serotype Enteritidis clinical strain SE380.The plasmid pSE380T was conjugated to Escherichia coli strain J53 and sequenced by PacBio RSII, followed by subsequent annotation and genetic analysis.Sequence analysis of this plasmid revealed that the entire Salmonella Enteritidis-specific virulence plasmid, pSEN, had been incorporated into an IncHI2 MDR plasmid, which comprises the cephalosporin and fosfomycin resistance determinants blaCTX-M-14 and fosA3. Based on BLAST analysis and scrutiny of insertion footprints, the insertion event was found to involve a replicative transposition process mediated by IS26, an IS element frequently detected in various resistance plasmids. The resulting pSE380T plasmid also comprises backbone elements of IncHI2 and IncFIA plasmids, producing a rare fusion product that simultaneously encodes functional features of both, i.e. virulence, resistance and high transmissibility.This is a novel hybrid plasmid mediating MDR and virulence from a clinical Salmonella Enteritidis strain. This plasmid is likely to be transmissible amongst various serotypes of Salmonella and other Enterobacteriaceae species, rendering a wide range of bacterial pathogens resistant to cephalosporins and fosfomycin, and further enhancing their virulence potential. It will be important to monitor the spread and further evolution of this plasmid among the Enterobacteriaceae strains.© The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.


July 7, 2019

The blaOXA-23-associated transposons in the genome of Acinetobacter spp. represent an epidemiological situation of the species encountering carbapenems.

High rates of carbapenem resistance in the human pathogen Acinetobacter baumannii threaten public health and need to be scrutinized.A total of 356 A. baumannii and 50 non-baumannii Acinetobacter spp. (NBA) strains collected in 2013 throughout South Korea were studied. The type of blaOXA-23 transposon was determined by PCR mapping and molecular epidemiology was assessed by MLST. Twelve representative strains and two comparative A. baumannii were entirely sequenced by single-molecule real-time sequencing.The carbapenem resistance rate was 88% in A. baumannii, mainly due to blaOXA-23, with five exceptional cases associated with ISAba1-blaOXA-51-like. The blaOXA-23 gene in A. baumannii was carried either by Tn2006 (44%) or Tn2009 (54%), with a few exceptions carried by Tn2008 (1.6%). Of the NBA strains, 14% were resistant to carbapenems, two with blaOXA-58 and five with blaOXA-23 associated with Tn2006. The Tn2006-possessing strains belonged to various STs, whereas Tn2008- and Tn2009-possessing strains were limited to ST208 and ST191, respectively. The three transposons were often multiplied in the chromosome, and the gene copy number and the carbapenem MICs presented linear relationships either very strongly for Tn2008 or moderately for Tn2006 and Tn2009.The dissemination of Tn2006 was facilitated by its capability for intercellular transfer and that of Tn2009 was attributable to successful dissemination of the ST191 bacterial host carrying the transposon. Tn2008 was infrequent because of its insufficient ability to undergo intercellular transfer and the scarce bacterial host A. baumannii ST208. Gene amplification is an adaptive mechanism for bacteria that encounter antimicrobial drugs.© The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.


July 7, 2019

Genomic analysis of Clavibacter michiganensis reveals insight into virulence strategies and genetic diversity of a gram-positive bacterial pathogen.

Clavibacter michiganensis subsp. michiganensis is a gram-positive bacterial pathogen that proliferates in the xylem vessels of tomato, causing bacterial canker disease. In this study, we sequenced and assembled genomes of 11 C. michiganensis subsp. michiganensis strains isolated from infected tomato fields in California as well as five Clavibacter strains that colonize tomato endophytically but are not pathogenic in this host. The analysis of the C. michiganensis subsp. michiganensis genomes supported the monophyletic nature of this pathogen but revealed genetic diversity among strains, consistent with multiple introduction events. Two tomato endophytes that clustered phylogenetically with C. michiganensis strains capable of infecting wheat and pepper and were also able to cause disease in these plants. Plasmid profiles of the California strains were variable and supported the essential role of the pCM1-like plasmid and the CelA cellulase in virulence, whereas the absence of the pCM2-like plasmid in some pathogenic C. michiganensis subsp. michiganensis strains revealed it is not essential. A large number of secreted C. michiganensis subsp. michiganensis proteins were carbohydrate-active enzymes (CAZymes). Glycome profiling revealed that C. michiganensis subsp. michiganensis but not endophytic Clavibacter strains is able to extensively alter tomato cell-wall composition. Two secreted CAZymes found in all C. michiganensis subsp. michiganensis strains, CelA and PelA1, enhanced pathogenicity on tomato. Collectively, these results provide a deeper understanding of C. michiganensis subsp. michiganensis diversity and virulence strategies.


July 7, 2019

Comparative genome analysis of the Flavobacteriales bacterium strain UJ101, isolated from the gut of Atergatis reticulatus.

Here we report the comparative genomic analysis of strain UJ101 with 15 strains from the family Flavobacteriaceae, using the CGExplorer program. Flavobacteriales bacterium strain UJ101 was isolated from a xanthid crab, Atergatis reticulatus, from the East Sea near Korea. The complete genome of strain UJ101 is a 3,074,209 bp, single, circular chromosome with 30.74% GC content. While the UJ101 genome contains a number of annotated genes for many metabolic pathways, such as the Embden-Meyerhof pathway, the pentose phosphate pathway, the tricarboxylic acid (TCA) cycle, and the glyoxylate cycle, genes for the Entner-Douddoroff pathway are not found in the UJ101 genome. Overall, carbon fixation processes were absent but nitrate reduction and denitrification pathways were conserved. The UJ101 genome was compared to genomes from other marine animals (three invertebrate strains and 5 fish strains) and other marine animal- derived genera. Notable results by genome comparisons showed that UJ101 is capable of denitrification and nitrate reduction, and that biotin-thiamine pathway participation varies among marine bacteria; fish-dwelling bacteria, freeliving bacteria, invertebrate-dwelling bacteria, and strain UJ101. Pan-genome analysis of the 16 strains in this study included 7,220 non-redundant genes that covered 62% of the pan-genome. A core-genome of 994 genes was present and consisted of 8% of the genes from the pan-genome. Strain UJ101 is a symbiotic hetero-organotroph isolated from xanthid crab, and is a metabolic generalist with nitrate-reducing abilities but without the ability to synthesize biotin. There is a general tendency of UJ101 and some fish pathogens to prefer thiamine-dependent glycolysis to gluconeogenesis. Biotin and thiamine auxotrophy or prototrophy may be used as important markers in microbial community studies.


July 7, 2019

Characterization of the emerging zoonotic pathogen Arcobacter thereius by whole genome sequencing and comparative genomics.

Four Arcobacter species have been associated with human disease, and based on current knowledge, these Gram negative bacteria are considered as potential food and waterborne zoonotic pathogens. At present, only the genome of the species Arcobacter butzleri has been analysed, and still little is known about their physiology and genetics. The species Arcobacter thereius has first been isolated from tissue of aborted piglets, duck and pig faeces, and recently from stool of human patients with enteritis. In the present study, the complete genome and analysis of the A. thereius type strain LMG24486T, as well as the comparative genome analysis with 8 other A. thereius strains are presented. Genome analysis revealed metabolic pathways for the utilization of amino acids, which represent the main source of energy, together with the presence of genes encoding for respiration-associated and chemotaxis proteins. Comparative genome analysis with the A. butzleri type strain RM4018 revealed a large correlation, though also unique features. Furthermore, in silico DDH and ANI based analysis of the nine A. thereius strains disclosed clustering into two closely related genotypes. No discriminatory differences in genome content nor phenotypic behaviour were detected, though recently the species Arcobacter porcinus was proposed to encompass part of the formerly identified Arcobacter thereius strains. The report of the presence of virulence associated genes in A. thereius, the presence of antibiotic resistance genes, verified by in vitro susceptibility testing, as well as other pathogenic related relevant features, support the classification of A. thereius as an emerging pathogen.


July 7, 2019

Recombination of virulence genes in divergent Acidovorax avenae strains that infect a common host.

Bacterial etiolation and decline (BED), caused by Acidovorax avenae, is an emerging disease of creeping bentgrass on golf courses in the United States. We performed the first comprehensive analysis of A. avenae on a nationwide collection of turfgrass- and maize-pathogenic A. avenae. Surprisingly, our results reveal that the turfgrass-pathogenic A. avenae in North America are not only highly divergent but also belong to two distinct phylogroups. Both phylogroups specifically infect turfgrass but are more closely related to maize pathogens than to each other. This suggests that, although the disease is only recently reported, it has likely been infecting turfgrass for a long time. To identify a genetic basis for the host specificity, we searched for genes closely related among turfgrass strains but distantly related to their homologs from maize strains. We found a cluster of 11 such genes generated by three ancient recombination events within the type III secretion system (T3SS) pathogenicity island. Ever since the recombination, the cluster has been conserved by strong purifying selection, hinting at its selective importance. Together our analyses suggest that BED is an ancient disease that may owe its host specificity to a highly conserved cluster of 11 T3SS genes.


July 7, 2019

The genome of the cotton bacterial blight pathogen Xanthomonas citri pv. malvacearum strain MSCT1.

Xanthomonas citri pv. malvacearum is a major pathogen of cotton, Gossypium hirsutum L.. In this study we report the complete genome of the X. citri pv. malvacearum strain MSCT1 assembled from long read DNA sequencing technology. The MSCT1 genome is the first X. citri pv. malvacearum genome with complete coding regions for X. citri pv. malvacearum transcriptional activator-like effectors. In addition functional and structural annotations are presented in this study that will provide a foundation for future pathogenesis studies with MSCT1.


July 7, 2019

Benchmark datasets for phylogenomic pipeline validation, applications for foodborne pathogen surveillance.

As next generation sequence technology has advanced, there have been parallel advances in genome-scale analysis programs for determining evolutionary relationships as proxies for epidemiological relationship in public health. Most new programs skip traditional steps of ortholog determination and multi-gene alignment, instead identifying variants across a set of genomes, then summarizing results in a matrix of single-nucleotide polymorphisms or alleles for standard phylogenetic analysis. However, public health authorities need to document the performance of these methods with appropriate and comprehensive datasets so they can be validated for specific purposes, e.g., outbreak surveillance. Here we propose a set of benchmark datasets to be used for comparison and validation of phylogenomic pipelines.We identified four well-documented foodborne pathogen events in which the epidemiology was concordant with routine phylogenomic analyses (reference-based SNP and wgMLST approaches). These are ideal benchmark datasets, as the trees, WGS data, and epidemiological data for each are all in agreement. We have placed these sequence data, sample metadata, and “known” phylogenetic trees in publicly-accessible databases and developed a standard descriptive spreadsheet format describing each dataset. To facilitate easy downloading of these benchmarks, we developed an automated script that uses the standard descriptive spreadsheet format.Our “outbreak” benchmark datasets represent the four major foodborne bacterial pathogens (Listeria monocytogenes, Salmonella enterica, Escherichia coli, and Campylobacter jejuni) and one simulated dataset where the “known tree” can be accurately called the “true tree”. The downloading script and associated table files are available on GitHub: https://github.com/WGS-standards-and-analysis/datasets.These five benchmark datasets will help standardize comparison of current and future phylogenomic pipelines, and facilitate important cross-institutional collaborations. Our work is part of a global effort to provide collaborative infrastructure for sequence data and analytic tools-we welcome additional benchmark datasets in our recommended format, and, if relevant, we will add these on our GitHub site. Together, these datasets, dataset format, and the underlying GitHub infrastructure present a recommended path for worldwide standardization of phylogenomic pipelines.


July 7, 2019

Improved PKS gene expression with strong endogenous promoter resulted in geldanamycin yield increase.

The type I polyketide geldanamycin is a potent anti-tumor reagent. Its biosynthesis includes three steps: the biosynthesis of precursors, such as 3-amino-5-hydroxybenzoic acid (AHBA), the polyketide synthase (PKS) chain extension, and the post-PKS modifications. According to the genomic and transcriptomic analysis, the PKS chain extension was deduced to be the rate-limiting step for geldanamycin production in Streptomyces hygroscopicus XM201. In order to improve the expression of PKS genes, a strong endogenous promoter 5063p was obtained based on the transcriptomic analysis and XylE enzymatic assay. By replacing the native PKS promoter gdmA1p with 5063p, the expression of the PKS genes during geldanamycin fermentation was increased by 4-141-folds, and the geldanamycin yield was increased by 39%. Interestingly, AHBA feeding experiment showed that the supply of AHBA in turn become a new rate-limiting factor for geldanamycin production. Further combined overexpression of the 6-gene AHBA biosynthetic cassette and PKS genes increased the yield of geldanamycin by 88%, from 773?mg?L(-1) of the wild-type to 1450?mg?L(-1) in the derived strain. Our results suggested that improved expression of all PKS genes in a particular biosynthetic gene cluster is important for the yield increase of the corresponding polyketide natural product.© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.


July 7, 2019

Novel pelagic iron-oxidizing Zetaproteobacteria from the Chesapeake Bay oxic-anoxic transition zone.

Chemolithotrophic iron-oxidizing bacteria (FeOB) could theoretically inhabit any environment where Fe(II) and O2 (or nitrate) coexist. Until recently, marine Fe-oxidizing Zetaproteobacteria had primarily been observed in benthic and subsurface settings, but not redox-stratified water columns. This may be due to the challenges that a pelagic lifestyle would pose for Zetaproteobacteria, given low Fe(II) concentrations in modern marine waters and the possibility that Fe oxyhydroxide biominerals could cause cells to sink. However, we recently cultivated Zetaproteobacteria from the Chesapeake Bay oxic-anoxic transition zone, suggesting that they can survive and contribute to biogeochemical cycling in a stratified estuary. Here we describe the isolation, characterization, and genomes of two new species, Mariprofundus aestuarium CP-5 and Mariprofundus ferrinatatus CP-8, which are the first Zetaproteobacteria isolates from a pelagic environment. We looked for adaptations enabling strains CP-5 and CP-8 to overcome the challenges of living in a low Fe redoxcline with frequent O2 fluctuations due to tidal mixing. We found that the CP strains produce distinctive dreadlock-like Fe oxyhydroxide structures that are easily shed, which would help cells maintain suspension in the water column. These oxides are by-products of Fe(II) oxidation, likely catalyzed by the putative Fe(II) oxidase encoded by the cyc2 gene, present in both CP-5 and CP-8 genomes; the consistent presence of cyc2 in all microaerophilic FeOB and other FeOB genomes supports its putative role in Fe(II) oxidation. The CP strains also have two gene clusters associated with biofilm formation (Wsp system and the Widespread Colonization Island) that are absent or rare in other Zetaproteobacteria. We propose that biofilm formation enables the CP strains to attach to FeS particles and form flocs, an advantageous strategy for scavenging Fe(II) and developing low [O2] microenvironments within more oxygenated waters. However, the CP strains appear to be adapted to somewhat higher concentrations of O2, as indicated by the presence of genes encoding aa3-type cytochrome c oxidases, but not the cbb3-type found in all other Zetaproteobacteria isolate genomes. Overall, our results reveal adaptations for life in a physically dynamic, low Fe(II) water column, suggesting that niche-specific strategies can enable Zetaproteobacteria to live in any environment with Fe(II).


July 7, 2019

Dynamics and impact of homologous recombination on the evolution of Legionella pneumophila.

Legionella pneumophila is an environmental bacterium and the causative agent of Legionnaires’ disease. Previous genomic studies have shown that recombination accounts for a high proportion (>96%) of diversity within several major disease-associated sequence types (STs) of L. pneumophila. This suggests that recombination represents a potentially important force shaping adaptation and virulence. Despite this, little is known about the biological effects of recombination in L. pneumophila, particularly with regards to homologous recombination (whereby genes are replaced with alternative allelic variants). Using newly available population genomic data, we have disentangled events arising from homologous and non-homologous recombination in six major disease-associated STs of L. pneumophila (subsp. pneumophila), and subsequently performed a detailed characterisation of the dynamics and impact of homologous recombination. We identified genomic “hotspots” of homologous recombination that include regions containing outer membrane proteins, the lipopolysaccharide (LPS) region and Dot/Icm effectors, which provide interesting clues to the selection pressures faced by L. pneumophila. Inference of the origin of the recombined regions showed that isolates have most frequently imported DNA from isolates belonging to their own clade, but also occasionally from other major clades of the same subspecies. This supports the hypothesis that the possibility for horizontal exchange of new adaptations between major clades of the subspecies may have been a critical factor in the recent emergence of several clinically important STs from diverse genomic backgrounds. However, acquisition of recombined regions from another subspecies, L. pneumophila subsp. fraseri, was rarely observed, suggesting the existence of a recombination barrier and/or the possibility of ongoing speciation between the two subspecies. Finally, we suggest that multi-fragment recombination may occur in L. pneumophila, whereby multiple non-contiguous segments that originate from the same molecule of donor DNA are imported into a recipient genome during a single episode of recombination.


July 7, 2019

Complete genome sequence of Hymenobacter sedentarius DG5BT, a bacterium resistant to gamma radiation

The ionizing radiation toxicity becomes a primary concern of the world; several exceptional attention was given to the resistance mechanisms of the radiation-resistant bacteria. Hymenobacter sedentarius DG5BT strain isolated from the gamma ray-irradiated soil samples shows resistance against gamma and UV radiation; however, their level of resistance is lower than that of other radiation resistant bacteria. To gain insight of radiation resistance, we carried out the whole genome sequencing of this strain. The genome of DG5BT strain is comprised of 4,868,852 bp (G+C content of 60.96%) including 3,994 protein-coding genes and 55 RNA genes. When compared with other bacteria, there are differences in compositions and copy numbers of several genes involved in DNA repair pathways and defense mechanism against protein damages. In this study, we discuss the implication of such findings concerning other radiation resistant bacteria.


July 7, 2019

Emergence and genomic diversification of a virulent serogroup W: ST-2881 (CC175) Neisseria meningitidis clone in the African meningitis belt

Countries of the African ‘meningitis belt’ are susceptible to meningococcal meningitis outbreaks. While in the past major epidemics have been primarily caused by serogroup A meningococci, W strains are currently responsible for most of the cases. After an epidemic in Mecca in 2000, W:ST-11 strains have caused many outbreaks worldwide. An unrelated W:ST-2881 clone was described for the first time in 2002, with the first meningitis cases caused by these bacteria reported in 2003. Here we describe results of a comparative whole-genome analysis of 74 W:ST-2881 strains isolated within the framework of two longitudinal colonization and disease studies conducted in Ghana and Burkina Faso. Genomic data indicate that the W:ST-2881 clone has emerged from Y:ST-175(CC175) bacteria by capsule switching. The circulating W:ST-2881 populations were composed of a variety of closely related but distinct genomic variants with no systematic differences between colonization and disease isolates. Two distinct and geographically clustered phylogenetic clonal variants were identified in Burkina Faso and a third in Ghana. On the basis of the presence or absence of 17 recombination fragments, the Ghanaian variant could be differentiated into five clusters. All 25 Ghanaian disease isolates clustered together with 23 out of 40 Ghanaian isolates associated with carriage within one cluster, indicating that W:ST-2881 clusters differ in virulence. More than half of the genes affected by horizontal gene transfer encoded proteins of the ‘cell envelope’ and the ‘transport/binding protein’ categories, which indicates that exchange of non-capsular antigens plays an important role in immune evasion.


July 7, 2019

Neisseria lactamica Y92-1009 complete genome sequence.

We present the high quality, complete genome assembly of Neisseria lactamica Y92-1009 used to manufacture an outer membrane vesicle (OMV)-based vaccine, and a member of the Neisseria genus. The strain is available on request from the Public Health England Meningococcal Reference Unit. This Gram negative, dipplococcoid bacterium is an organism of worldwide clinical interest because human nasopharyngeal carriage is related inversely to the incidence of meningococcal disease, caused by Neisseria meningitidis. The organism sequenced was isolated during a school carriage survey in Northern Ireland in 1992 and has been the subject of a variety of laboratory and clinical studies. Four SMRT cells on a RSII machine by Pacific Biosystems were used to produce a complete, closed genome assembly. Sequence data were obtained for a total of 30,180,391 bases from 2621 reads and assembled using the HGAP algorithm. The assembly was corrected using short reads obtained from an Illumina HiSeq 2000instrument. This resulted in a 2,146,723 bp assembly with approximately 460 fold mean coverage depth and a GC ratio of 52.3%.


July 7, 2019

Novel urease-negative Helicobacter sp. ‘H. enhydrae sp. nov.’ isolated from inflamed gastric tissue of southern sea otters.

A total of 31 sea otters Enhydra lutris nereis found dead or moribund (and then euthanized) were necropsied in California, USA. Stomach biopsies were collected and transected with equal portions frozen or placed in formalin and analyzed histologically and screened for Helicobacter spp. in gastric tissue. Helicobacter spp. were isolated from 9 sea otters (29%); 58% (18 of 31) animals were positive for helicobacter by PCR. The Helicobacter sp. was catalase- and oxidase-positive and urease-negative. By electron microscopy, the Helicobacter sp. had lateral and polar sheathed flagella and had a slightly curved rod morphology. 16S and 23S rRNA sequence analyses of all ‘H. enhydrae’ isolates had similar sequences, which clustered as a novel Helicobacter sp. closely related to H. mustelae (96-97%). The genome sequence of isolate MIT 01-6242 was assembled into a single ~1.6 Mb long contig with a 40.8% G+C content. The annotated genome contained 1699 protein-coding sequences and 43 RNAs, including 65 genes homologous to known Helicobacter spp. and Campylobacter spp. virulence factors. Histological changes in the gastric tissues extended from mild cystic degeneration of gastric glands to severe mucosal erosions and ulcers. Silver stains of infected tissues demonstrated slightly curved bacterial rods at the periphery of the gastric ulcers and on the epithelial surface of glands. The underlying mucosa and submucosa were infiltrated by low numbers of neutrophils, macrophages, and lymphocytes, with occasional lymphoid aggregates and well-defined lymphoid follicles. This is the second novel Helicobacter sp., which we have named ‘H. enhydrae’, isolated from inflamed stomachs of mustelids, the first being H. mustelae from a ferret.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.