fbpx
X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Sunday, July 7, 2019

Complete genome sequences of two Rhodobacter strains.

We report the complete genome sequences of two strains of the Alphaproteobacteria genus Rhodobacter, Rhodobacter blasticus 28/5, the source of the commercially available enzyme RsaI, and a new isolate of Rhodobacter sphaeroides 2.4.1. Both strains contain multiple restriction-modification systems, and their DNA methylation motifs are included in this report.

Read More »

Sunday, July 7, 2019

New variant of multidrug-resistant Salmonella enterica serovar Typhimurium associated with invasive disease in immunocompromised patients in Vietnam.

Nontyphoidal Salmonella (NTS), particularly Salmonella enterica serovar Typhimurium, is among the leading etiologic agents of bacterial enterocolitis globally and a well-characterized cause of invasive disease (iNTS) in sub-Saharan Africa. In contrast, S Typhimurium is poorly defined in Southeast Asia, a known hot spot for zoonotic disease with a recently described burden of iNTS disease. Here, we aimed to add insight into the epidemiology and potential impact of zoonotic transfer and antimicrobial resistance (AMR) in S Typhimurium associated with iNTS and enterocolitis in Vietnam. We performed whole-genome sequencing and phylogenetic reconstruction on 85 human (enterocolitis, carriage, and iNTS) and 113 animal S Typhimurium isolates…

Read More »

Sunday, July 7, 2019

Myxobacteria: Unraveling the potential of a unique microbiome niche

Natural products obtained from microorganisms have been playing an imperative role in drug discovery for decades. Hence, rightfully, microorganisms are considered as the richest source of biochemical remedies. In this review, we represent an unexplored family of bacteria considered to be prolific producers of diverse metabolites. Myxobacteria are gram-negative bacteria which have been reported to produce large families of secondary metabolites with prominent antimicrobial, antifungal, and antitumor activities. Klaus Gerth, Norbert Bedorf, Herbert Irschik, and Hans Reichenbach observed the antifungal activity of Sorangium cellulosum against Mucor hiemalis. In 2006, Hans Reichenbach and his team obtained a novel macrolide cruentaren A…

Read More »

Sunday, July 7, 2019

The molecular basis for the intramolecular migration (NIH shift) of the carboxyl group during para-hydroxybenzoate catabolism.

The NIH shift is a chemical rearrangement in which a substituent on an aromatic ring undergoes an intramolecular migration, primarily during an enzymatic hydroxylation reaction. The molecular mechanism for the NIH shift of a carboxyl group has remained a mystery for 40 years. Here, we elucidate the molecular mechanism of the reaction in the conversion of para-hydroxybenzoate (PHB) to gentisate (GA, 2, 5-dihydroxybenzoate). Three genes (phgABC) from the PHB utilizer Brevibacillus laterosporus PHB-7a encode enzymes (p-hydroxybenzoyl-CoA ligase, p-hydroxybenzoyl-CoA hydroxylase and gentisyl-CoA thioesterase, respectively) catalyzing the conversion of PHB to GA via a route involving CoA thioester formation, hydroxylation concomitant with…

Read More »

Sunday, July 7, 2019

Genomic features of the Helicobacter pylori strain PMSS1 and its virulence attributes as deduced from its in vivo colonisation patterns.

The human gastric pathogen Helicobacter pylori occurs in two basic variants, either exhibiting a functional cagPAI-encoded type-4-secretion-system (T4SS) or not. Only a few cagPAI-positive strains have been successfully adapted for long-term infection of mice, including the pre-mouse Sydney strain 1 (PMSS1). Here we confirm that PMSS1 induces gastric inflammation and neutrophil infiltration in mice, progressing to intestinal metaplasia. Complete genome analysis of PMSS1 revealed 1,423 coding sequences, encompassing the cagPAI gene cluster and, unusually, the location of the cytotoxin-associated gene A (cagA) approximately 15 kb downstream of the island. PMSS1 harbours three genetically exchangeable loci that are occupied by the…

Read More »

Sunday, July 7, 2019

Measuring the mappability spectrum of reference genome assemblies

The ability to infer actionable information from genomic variation data in a resequencing experiment relies on accurately aligning the sequences to a reference genome. However, this accuracy is inherently limited by the quality of the reference assembly and the repetitive content of the subject’s genome. As long read sequencing technologies become more widespread, it is crucial to investigate the expected improvements in alignment accuracy and variant analysis over existing short read methods. The ability to quantify the read length and error rate necessary to uniquely map regions of interest in a sequence allows users to make informed decisions regarding experiment…

Read More »

Sunday, July 7, 2019

The complete genomic sequence of a novel cold-adapted bacterium, Planococcus maritimus Y42, isolated from crude oil-contaminated soil.

Planococcus maritimus Y42, isolated from the petroleum-contaminated soil of the Qaidam Basin, can use crude oil as its sole source of carbon and energy at 20 °C. The genome of P. maritimus strain Y42 has been sequenced to provide information on its properties. Genomic analysis shows that the genome of strain Y42 contains one circular DNA chromosome with a size of 3,718,896 bp and a GC content of 48.8%, and three plasmids (329,482; 89,073; and 12,282 bp). Although the strain Y42 did not show a remarkably higher ability in degrading crude oil than other oil-degrading bacteria, the existence of strain Y42 played a…

Read More »

Sunday, July 7, 2019

One complete and three draft genome sequences of four Brochothrix thermosphacta strains, CD 337, TAP 175, BSAS1 3 and EBP 3070.

Brochothrix thermosphacta is one of the dominant bacterial species associated with spoilage of chilled meat and seafood products through the production of various metabolites responsible for off-odors. However, metabolic pathways leading to meat and seafood spoilage are not all well known. The production of spoiling molecules seems to depend both on strains and on food matrix. Several B. thermosphacta genome sequences have been reported, all issued from meat isolates. Here, we report four genome sequences, one complete and three as drafts. The four B. thermosphacta strains CD 337, TAP 175, BSAS1 3, and EBP 3070 were isolated from different ecological…

Read More »

Sunday, July 7, 2019

PacBio genome sequences of Escherichia coli serotype O157:H7, diffusely adherent E. coli, and Salmonella enterica strains, all carrying plasmids with an mcr-1 resistance gene.

We report here Illumina-corrected PacBio whole-genome sequences of an Escherichia coli serotype O157:H7 strain (2017C-4109), an E. coli serotype O[undetermined]:H2 strain (2017C-4173W12), and a Salmonella enterica subsp. enterica serovar Enteritidis strain (2017K-0021), all of which carried the mcr-1 resistance gene on an IncI2 or IncX4 plasmid. We also determined that pMCR-1-CTSe is identical to a previously published plasmid, pMCR-1-CT.

Read More »

Sunday, July 7, 2019

Complete genome sequence of the Arcobacter mytili type strain LMG 24559

Multiple Arcobacter species have been recovered from fresh and con- taminated waters, marine environments, and shellfish. Arcobacter mytili was recov- ered in 2006 from mussels collected from the Ebro River delta in Catalonia, Spain. This study describes the complete whole-genome sequence of the A. mytili type strain LMG 24559 (=F2075T=CECT 7386T).

Read More »

Sunday, July 7, 2019

Chromosomal Sil system contributes to silver resistance in E. coli ATCC 8739.

The rise of antibiotic resistance in pathogenic bacteria is endangering the efficacy of antibiotics, which consequently results in greater use of silver as a biocide. Chromosomal mapping of the Cus system or plasmid encoded Sil system and their relationship with silver resistance was studied for several gram-negative bacteria. However, only few reports investigated silver detoxification mediated by the Sil system integrated in Escherichia coli chromosome. Accordingly, this work aimed to study the Sil system in E. coli ATCC 8739 and to produce evidence for its role in silver resistance development. Silver resistance was induced in E. coli ATCC 8739 by…

Read More »

Sunday, July 7, 2019

Salicibibacter kimchii gen. nov., sp. nov., a moderately halophilic and alkalitolerant bacterium in the family Bacillaceae, isolated from kimchi.

A moderately halophilic and alkalitolerant bacterial strain NKC1-1T was isolated from commercial kimchi in Korea. Strain NKC1-1T was Gram-stain-positive, aerobic, rod-shaped, non-motile, and contained diaminopimelic acid-type murein. Cell growth was observed in a medium containing 0-25% (w/v) NaCl (optimal at 10% [w/v]), at 20-40°C (optimal at 37°C) and pH 6.5-10.0 (optimal at pH 9.0). The major isoprenoid quinone of the isolate was menaquinone-7, and the major polar lipids were phosphatidylglycerol and unidentified phospholipids. Cell membrane of the strain contained iso-C17:0 and anteiso-C15:0 as the major fatty acids. Its DNA G + C content was 45.2 mol%. Phylogenetic analysis indicated the…

Read More »

Sunday, July 7, 2019

Identification and genome analysis of Deinococcus actinosclerus SJTR1, a novel 17ß-estradiol degradation bacterium.

Biodegradation with microorganisms is considered as an efficient strategy to remove the environmental pollutants. In this work, Deinococcus actinosclerus SJTR1 isolated from the wastewater was confirmed with great degradation capability to 17ß-estradiol, one typical estrogen chemical. It could degrade nearly 90% of 17ß-estradiol (10 mg/L) in 5 days and transform it into estrone; its degradation kinetics fitted for the first-order kinetic equation. The whole genome sequence of D. actinosclerus SJTR1 was obtained and annotated, containing one chromosome (3,315,586 bp) and four plasmids (ranging from 17,267 bp to 460,244 bp). A total of 3913 CDSs and 73 RNA genes (including 12 rRNA genes, 50 tRNA genes,…

Read More »

1 217 218 219 220 221 223

Subscribe for blog updates:

Archives

Search

Categories

Press Release

PacBio Grants Equity Incentive Award to New Employee

Friday, November 19, 2021

Stay
Current

Visit our blog »