July 7, 2019  |  

Identification and genome analysis of Deinococcus actinosclerus SJTR1, a novel 17ß-estradiol degradation bacterium.

Authors: Xiong, Weiliang and Peng, Wanli and Liang, Rubing

Biodegradation with microorganisms is considered as an efficient strategy to remove the environmental pollutants. In this work, Deinococcus actinosclerus SJTR1 isolated from the wastewater was confirmed with great degradation capability to 17ß-estradiol, one typical estrogen chemical. It could degrade nearly 90% of 17ß-estradiol (10 mg/L) in 5 days and transform it into estrone; its degradation kinetics fitted for the first-order kinetic equation. The whole genome sequence of D. actinosclerus SJTR1 was obtained and annotated, containing one chromosome (3,315,586 bp) and four plasmids (ranging from 17,267 bp to 460,244 bp). A total of 3913 CDSs and 73 RNA genes (including 12 rRNA genes, 50 tRNA genes, and 11 ncRNA genes) were identified in its whole genome sequence. On this basis, a series of potential genes involved in steroid metabolism and stress responses of D. actinosclerus SJTR1 were predicted. It is the first report of Deinococcus strain with the degradation capability to estrogens. This work could enrich the genome sources of the estrogen-degrading strains and promote the degradation mechanism study of 17ß-estradiol in bacteria.

Journal: 3 Biotech
DOI: 10.1007/s13205-018-1466-x
Year: 2018

Read publication

Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.