X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:

Authors: Stephens, Zachary D and Iyer, Ravishankar K

The ability to infer actionable information from genomic variation data in a resequencing experiment relies on accurately aligning the sequences to a reference genome. However, this accuracy is inherently limited by the quality of the reference assembly and the repetitive content of the subject's genome. As long read sequencing technologies become more widespread, it is crucial to investigate the expected improvements in alignment accuracy and variant analysis over existing short read methods. The ability to quantify the read length and error rate necessary to uniquely map regions of interest in a sequence allows users to make informed decisions regarding experiment design and provides useful metrics for comparing the magnitude of repetition across different reference assemblies. To this end we have developed NEAT-Repeat, a toolkit for exhaustively identifying the minimum read length required to uniquely map each position of a reference sequence given a specified error rate. Using these tools we computed the -mappability spectrum" for ten reference sequences, including human and a range of plants and animals, quantifying the theoretical improvements in alignment accuracy that would result from sequencing with longer reads or reads with less base-calling errors. Our inclusion of read length and error rate builds upon existing methods for mappability tracks based on uniqueness or aligner-specific mapping scores, and thus enables more comprehensive analysis. We apply our mappability results to whole-genome variant call data, and demonstrate that variants called with low mapping and genotype quality scores are disproportionately found in reference regions that require long reads to be uniquely covered. We propose that our mappability metrics provide a valuable supplement to established variant filtering and annotation pipelines by supplying users with an additional metric related to read mapping quality. NEAT-Repeat can process large and repetitive genomes, such as those of corn and soybean, in a tractable amount of time by leveraging efficient methods for edit distance computation as well as running multiple jobs in parallel. NEAT-Repeat is written in Python 2.7 and C++, and is available at https://github.com/zstephens/neat-repeat.

Journal:
DOI: 10.1145/3233547.3233582
Year: 2018

Read Publication

 

Press Release

Pacific Biosciences Announces New Chief Financial Officer

Monday, September 14, 2020

Stay
Current

Visit our blog »