Menu
July 7, 2019  |  

Genomic sequencing of a strain of Acinetobacter baumannii and potential mechanisms to antibiotics resistance.

Acinetobacter baumannii has been becoming a great challenge to clinicians due to their resistance to almost all available antibiotics. In this study, we sequenced the genome from a multiple antibiotics resistant Acinetobacter baumannii stain which was named A. baumannii-1isolated from China by SMRT sequencing technology to explore its potential mechanisms to antibiotic resistance. We found that several mechanisms might contribute to the antibiotic resistance of Acinetobacter baumannii. Specifically, we found that SNP in genes associated with nucleotide excision repair and ABC transporter might contribute to its resistance to multiple antibiotics; we also found that specific genes associated with bacterial DNA integration and recombination, DNA-mediated transposition and response to antibiotics might contribute to its resistance to multiple antibiotics; Furthermore, specific genes associated with penicillin and cephalosporin biosynthetic pathway and specific genes associated with CHDL and MBL ß-lactamase genes might contribute to its resistance to multiple antibiotics. Thus, the detailed mechanisms by which Acinetobacter baumannii show extensive resistance to multiple antibiotics are very complicated. Such a study might be helpful to develop new strategies to control Acinetobacter baumannii infection. Copyright © 2017 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Multi-omics approach to study global changes in a triclosan-resistant mutant strain of Acinetobacter baumannii ATCC 17978.

Acinetobacter baumannii AB042, a triclosan-resistant mutant strain, was examined for modulated gene expression using whole-genome sequencing, transcriptomics and proteomics in order to understand the mechanism of triclosan resistance as well as its impact on A. baumannii. Data revealed modulated expression of the fatty acid metabolism pathway, co-factors known to play a role in the synthesis of fatty acids, as well as several transcriptional regulators. The membrane composition of the mutant revealed a decrease in C18 with a corresponding increase in C16 fatty acids compared with the parent strain A. baumannii ATCC 17978. These data indicate that A. baumannii responds to triclosan by altering the expression of genes involved in fatty acid metabolism, antibiotic resistance and amino acid metabolism. Copyright © 2016 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.


July 7, 2019  |  

Complete genome sequence of Acinetobacter sp. strain NCu2D-2 isolated from a mouse.

Whole-genome sequencing of Acinetobacter sp. strain NCu2D-2, isolated from the trachea of a mouse, revealed the presence of a plasmid of 309,964 bp with little overall similarity to known plasmids and enriched in insertion sequences (ISs) closely related to IS elements known from the nosocomial pathogen Acinetobacter baumannii. Copyright © 2017 Blaschke and Wilharm.


July 7, 2019  |  

First report of blaOXA-499 as a carbapenemase gene from Acinetobacter pittii.

We identified the carbapenemase gene blaOXA-499, a variant of blaOXA-143 from a clinical isolate of Acinetobacter pittii for the first time. OXA-499 shared 93.1% amino acid identity with OXA-143 and the gene was located on the chromosome. By cloning the OXA-499 encoding gene into the pWH1266 vector and transforming into susceptible Acinetobacter spp, we were able to show that OXA-499 confers resistance to carbapenems. Copyright © 2017 American Society for Microbiology.


July 7, 2019  |  

Transcriptome Remodeling of Acinetobacter baumannii during Infection and Treatment.

Acinetobacter baumannii is an increasingly common multidrug-resistant pathogen in health care settings. Although the genetic basis of antibiotic resistance mechanisms has been extensively studied, much less is known about how genetic variation contributes to other aspects of successful infections. Genetic changes that occur during host infection and treatment have the potential to remodel gene expression patterns related to resistance and pathogenesis. Longitudinal sets of multidrug-resistant A. baumannii isolates from eight patients were analyzed by RNA sequencing (RNA-seq) to identify differentially expressed genes and link them to genetic changes contributing to transcriptional variation at both within-patient and population levels. The number of differentially expressed genes among isolates from the same patient ranged from 26 (patient 588) to 145 (patient 475). Multiple patients had isolates with differential gene expression patterns related to mutations in the pmrAB and adeRS two-component regulatory system genes, as well as significant differences in genes related to antibiotic resistance, iron acquisition, amino acid metabolism, and surface-associated proteins. Population level analysis revealed 39 genetic regions with clade-specific differentially expressed genes, for which 19, 8, and 3 of these could be explained by insertion sequence mobilization, recombination-driven sequence variation, and intergenic mutations, respectively. Multiple types of mutations that arise during infection can significantly remodel the expression of genes that are known to be important in pathogenesis. IMPORTANCE Health care-associated multidrug-resistant Acinetobacter baumannii can cause persistent infections in patients, but bacterial cells must overcome host defenses and antibiotic therapies to do so. Genetic variation arises during host infection, and new mutations are often enriched in genes encoding transcriptional regulators, iron acquisition systems, and surface-associated structures. In this study, genetic variation was shown to result in transcriptome remodeling at the level of individual patients and across phylogenetic groups. Differentially expressed genes include those related to capsule modification, iron acquisition, type I pili, and antibiotic resistance. Population level transcriptional variation reflects genome dynamics over longer evolutionary time periods, and convergent transcriptional changes support the adaptive significance of these regions. Transcriptional changes can be attributed to multiple types of genomic change, but insertion sequence mobilization had a predominant effect. The transcriptional effects of mutations that arise during infection highlight the rapid adaptation of A. baumannii during host exposure. Copyright © 2017 Wright et al.


July 7, 2019  |  

Genomic epidemiology of NDM-1-encoding plasmids in Latin American clinical isolates reveals insights into the evolution of multidrug resistance

Bacteria that produce the broad-spectrum Carbapenem antibiotic New Delhi Metallo-ß-lactamase (NDM) place a burden on health care systems worldwide, due to the limited treatment options for infections caused by them and the rapid global spread of this antibiotic resistance mechanism. Although it is believed that the associated resistance gene blaNDM-1 originated in Acinetobacter spp., the role of Enterobacteriaceae in its dissemination remains unclear. In this study, we used whole genome sequencing to investigate the dissemination dynamics of blaNDM-1-positive plasmids in a set of 21 clinical NDM-1-positive isolates from Colombia and Mexico (Providencia rettgeri, Klebsiella pneumoniae, and Acinetobacter baumannii) as well as six representative NDM-1-positive Escherichia coli transconjugants. Additionally, the plasmids from three representative P. rettgeri isolates were sequenced by PacBio sequencing and finished. Our results demonstrate the presence of previously reported plasmids from K. pneumoniae and A. baumannii in different genetic backgrounds and geographically distant locations in Colombia. Three new previously unclassified plasmids were also identified in P. rettgeri from Colombia and Mexico, plus an interesting genetic link between NDM-1-positive P. rettgeri from distant geographic locations (Canada, Mexico, Colombia, and Israel) without any reported epidemiological links was discovered. Finally, we detected a relationship between plasmids present in P. rettgeri and plasmids from A. baumannii and K. pneumoniae. Overall, our findings suggest a Russian doll model for the dissemination of blaNDM-1 in Latin America, with P. rettgeri playing a central role in this process, and reveal new insights into the evolution and dissemination of plasmids carrying such antibiotic resistance genes.© The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.


July 7, 2019  |  

Comparative genomic analysis of Acinetobacter strains isolated from murine colonic crypts.

A restricted set of aerobic bacteria dominated by the Acinetobacter genus was identified in murine intestinal colonic crypts. The vicinity of such bacteria with intestinal stem cells could indicate that they protect the crypt against cytotoxic and genotoxic signals. Genome analyses of these bacteria were performed to better appreciate their biodegradative capacities.Two taxonomically different clusters of Acinetobacter were isolated from murine proximal colonic crypts, one was identified as A. modestus and the other as A. radioresistens. Their identification was performed through biochemical parameters and housekeeping gene sequencing. After selection of one strain of each cluster (A. modestus CM11G and A. radioresistens CM38.2), comparative genomic analysis was performed on whole-genome sequencing data. The antibiotic resistance pattern of these two strains is different, in line with the many genes involved in resistance to heavy metals identified in both genomes. Moreover whereas the operon benABCDE involved in benzoate metabolism is encoded by the two genomes, the operon antABC encoding the anthranilate dioxygenase, and the phenol hydroxylase gene cluster are absent in the A. modestus genomic sequence, indicating that the two strains have different capacities to metabolize xenobiotics. A common feature of the two strains is the presence of a type IV pili system, and the presence of genes encoding proteins pertaining to secretion systems such as Type I and Type II secretion systems.Our comparative genomic analysis revealed that different Acinetobacter isolated from the same biological niche, even if they share a large majority of genes, possess unique features that could play a specific role in the protection of the intestinal crypt.


July 7, 2019  |  

Genome sequence of Acinetobacter lactucae OTEC-02, isolated from hydrocarbon-contaminated soil.

Acinetobacter lactucae OTEC-02 was isolated from hydrocarbon-contaminated soils. Whole-genome sequence analysis was performed to learn more about the strain’s ability to degrade different types of recalcitrant toxic monoaromatic hydrocarbons. The genome of this bacterium revealed its genomic properties and versatile metabolic features, as well as a complete prophage. Copyright © 2017 Rogel-Hernandez et al.


July 7, 2019  |  

Whole-genome sequence of Acinetobacter pittii HUMV-6483 isolated from human urine.

Acinetobacter pittii strain HUMV-6483 was obtained from urine from an adult patient. We report here its complete genome assembly using PacBio single-molecule real-time sequencing, which resulted in a chromosome with 4.07 Mb and a circular contig of 112 kb. About 3,953 protein-coding genes are predicted from this assembly. Copyright © 2017 Chapartegui-González et al.


July 7, 2019  |  

The blaOXA-23-associated transposons in the genome of Acinetobacter spp. represent an epidemiological situation of the species encountering carbapenems.

High rates of carbapenem resistance in the human pathogen Acinetobacter baumannii threaten public health and need to be scrutinized.A total of 356 A. baumannii and 50 non-baumannii Acinetobacter spp. (NBA) strains collected in 2013 throughout South Korea were studied. The type of blaOXA-23 transposon was determined by PCR mapping and molecular epidemiology was assessed by MLST. Twelve representative strains and two comparative A. baumannii were entirely sequenced by single-molecule real-time sequencing.The carbapenem resistance rate was 88% in A. baumannii, mainly due to blaOXA-23, with five exceptional cases associated with ISAba1-blaOXA-51-like. The blaOXA-23 gene in A. baumannii was carried either by Tn2006 (44%) or Tn2009 (54%), with a few exceptions carried by Tn2008 (1.6%). Of the NBA strains, 14% were resistant to carbapenems, two with blaOXA-58 and five with blaOXA-23 associated with Tn2006. The Tn2006-possessing strains belonged to various STs, whereas Tn2008- and Tn2009-possessing strains were limited to ST208 and ST191, respectively. The three transposons were often multiplied in the chromosome, and the gene copy number and the carbapenem MICs presented linear relationships either very strongly for Tn2008 or moderately for Tn2006 and Tn2009.The dissemination of Tn2006 was facilitated by its capability for intercellular transfer and that of Tn2009 was attributable to successful dissemination of the ST191 bacterial host carrying the transposon. Tn2008 was infrequent because of its insufficient ability to undergo intercellular transfer and the scarce bacterial host A. baumannii ST208. Gene amplification is an adaptive mechanism for bacteria that encounter antimicrobial drugs.© The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.


July 7, 2019  |  

A nosocomial outbreak of extensively drug resistant (XDR) Acinetobacter baumannii isolates containing blaOXA-237 encoded on a plasmid.

Carbapenem antibiotics are among the mainstay for treating infections caused by Acinetobacter baumannii, especially in the Northwest United States where carbapenem resistant A. baumannii remain relatively rare. However, between June 2012 and October 2014, an outbreak of carbapenem-resistant A. baumannii occurred in 16 patients from 5 healthcare facilities in the state of Oregon. All isolates were defined as extensively-drug resistant (XDR). MLST revealed that the isolates belonged to sequence type 2 (international clone 2, IC2), and were greater than 95% similar by rep-PCR analysis. Multiplex PCR revealed the presence of a blaOXA carbapenemase gene, later identified as blaOXA-237 Whole genome sequencing of all isolates revealed a well-supported separate branch within a global A. baumannii phylogeny. Pacific Biosciences (PacBio) SMRT sequencing was also performed on one isolate to gain insight into the genetic location of the carbapenem resistance gene. We discovered that blaOXA-237, flanked on either side by ISAba1 elements in opposite orientations, was carried by a 15,198 bp plasmid designated pORAB01-3, and was present in all 16 isolates. The plasmid also contained genes encoding for: a TonB-dependent receptor, septicolysin, a type IV secretory system conjugative DNA transfer family protein, an integrase, a RepB family plasmid DNA replication initiator protein, an a/ß hydrolase, and a BrnT/BrnA type II toxin-antitoxin system. This is the first reported outbreak associated with this specific carbapenemase. Particularly worrisome is that blaOXA-237 was plasmid encoded and found in the most prominent worldwide clonal group IC2, potentially giving pORAB01-3 great capacity for future widespread dissemination. Copyright © 2017 American Society for Microbiology.


July 7, 2019  |  

Complete genome sequence of Acinetobacter baumannii A1296 (ST1469) with a small plasmid harbouring the tet(39) tetracycline resistance gene.

Acinetobacter baumannii is considered an important nosocomial pathogen worldwide owing to its increasing antibiotic resistance. This study aimed to determine the complete genome sequence of A. baumannii strain A1296 and to perform a comparative analysis among A. baumannii.The complete genome sequence of A. baumannii A1296 was sequenced on two SMRT cells using P6C4 chemistry on a PacBio Single Molecule, Real-Time (SMRT) RS II instrument. The A1296 genome sequence was annotated using Prokaryotic Genome Automatic Annotation Pipeline (PGAAP), and the sequence type and resistance genes of the strain were analysed.Here we present the complete genome sequence of A. baumannii strain A1296, belonging to a novel sequence type (ST1469) and isolated from patient in China, that was sensitive to multiple antibiotics. The genome of A. baumannii A1296 was 3810701bp in length, including one circular chromosome and two plasmids. The tet(39) resistance gene was located on the small plasmid in this A. baumannii strain.The genome sequence of A. baumannii strain A1296 can be used as a reference sequence for comparative analysis aimed at elucidating the acquisition, dissemination and mobilisation of resistance genes among A. baumannii. Copyright © 2017 International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All rights reserved.


July 7, 2019  |  

Rapid gene turnover as a significant source of genetic variation in a recently seeded population of a pathogen.

Genome sequencing has been useful to gain an understanding of bacterial evolution. It has been used for studying the phylogeography and/or the impact of mutation and recombination on bacterial populations. However, it has rarely been used to study gene turnover at microevolutionary scales. Here, we sequenced Mexican strains of the human pathogen Acinetobacter baumannii sampled from the same locale over a 3 year period to obtain insights into the microevolutionary dynamics of gene content variability. We found that the Mexican A. baumannii population was recently founded and has been emerging due to a rapid clonal expansion. Furthermore, we noticed that on average the Mexican strains differed from each other by over 300 genes and, notably, this gene content variation has accrued more frequently and faster than the accumulation of mutations. Moreover, due to its rapid pace, gene content variation reflects the phylogeny only at very short periods of time. Additionally, we found that the external branches of the phylogeny had almost 100 more genes than the internal branches. All in all, these results show that rapid gene turnover has been of paramount importance in producing genetic variation within this population and demonstrate the utility of genome sequencing to study alternative forms of genetic variation.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.