Menu
July 7, 2019  |  

A gapless genome sequence of the fungus Botrytis cinerea.

Following earlier incomplete and fragmented versions of a genome sequence for the grey mould Botrytis cinerea, we here report a gapless, near-finished genome sequence for B. cinerea strain B05.10. The assembly comprises 18 chromosomes and was confirmed by an optical map and a genetic map based on ~75 000 SNP markers. All chromosomes contain fully assembled centromeric regions, and 10 chromosomes have telomeres on both ends. The genetic map consisted of 4153 cM and comparison of genetic distances with the physical distances identified 40 recombination hotspots. The linkage map also identified two mutations, located in the previously described genes Bos1 and BcsdhB, that confer resistance to the fungicides boscalid and iprodione. The genome was predicted to encode 11 701 proteins. RNAseq data from >20 different samples were used to validate and improve gene models. Manual curation of chromosome 1 revealed interesting features, such as the occurrence of a dicistronic transcript and fully overlapping genes in opposite orientations, as well as many spliced antisense transcripts. Manual curation also revealed that UTRs of genes can be complex and long, with many UTRs exceeding lengths of 1 kb and possessing multiple introns. Community annotation is in progress. This article is protected by copyright. All rights reserved. © 2016 BSPP AND JOHN WILEY & SONS LTD.


July 7, 2019  |  

Complete genome sequence of Akkermansia glycaniphila strain PytT, a mucin-degrading specialist of the reticulated python gut.

Akkermansia glycaniphila is a novel Akkermansia species that was isolated from the intestine of the reticulated python and shares the capacity to degrade mucin with the human strain Akkermansia muciniphila Muc(T) Here, we report the complete genome sequence of strain Pyt(T) of 3,074,121 bp. The genomic analysis reveals genes for mucin degradation and aerobic respiration. Copyright © 2017 Ouwerkerk et al.


July 7, 2019  |  

Hybrid sequencing and map finding (HySeMaFi): optional strategies for extensively deciphering gene splicing and expression in organisms without reference genome.

Using second-generation sequencing (SGS) RNA-Seq strategies, extensive alterative splicing prediction is impractical and high variability of isoforms expression quantification is inevitable in organisms without true reference dataset. we report the development of a novel analysis method, termed hybrid sequencing and map finding (HySeMaFi) which combines the specific strengths of third-generation sequencing (TGS) (PacBio SMRT sequencing) and SGS (Illumina Hi-Seq/MiSeq sequencing) to effectively decipher gene splicing and to reliably estimate the isoforms abundance. Error-corrected long reads from TGS are capable of capturing full length transcripts or as large partial transcript fragments. Both true and false isoforms, from a particular gene, as well as that containing all possible exons, could be generated by employing different assembly methods in SGS. We first develop an effective method which can establish the mapping relationship between the error-corrected long reads and the longest assembled contig in every corresponding gene. According to the mapping data, the true splicing pattern of the genes was reliably detected, and quantification of the isoforms was also effectively determined. HySeMaFi is also the optimal strategy by which to decipher the full exon expression of a specific gene when the longest mapped contigs were chosen as the reference set.


July 7, 2019  |  

Fungal volatile compounds induce production of the secondary metabolite Sodorifen in Serratia plymuthica PRI-2C.

The ability of bacteria and fungi to communicate with each other is a remarkable aspect of the microbial world. It is recognized that volatile organic compounds (VOCs) act as communication signals, however the molecular responses by bacteria to fungal VOCs remain unknown. Here we perform transcriptomics and proteomics analyses of Serratia plymuthica PRI-2C exposed to VOCs emitted by the fungal pathogen Fusarium culmorum. We find that the bacterium responds to fungal VOCs with changes in gene and protein expression related to motility, signal transduction, energy metabolism, cell envelope biogenesis, and secondary metabolite production. Metabolomic analysis of the bacterium exposed to the fungal VOCs, gene cluster comparison, and heterologous co-expression of a terpene synthase and a methyltransferase revealed the production of the unusual terpene sodorifen in response to fungal VOCs. These results strongly suggest that VOCs are not only a metabolic waste but important compounds in the long-distance communication between fungi and bacteria.


July 7, 2019  |  

Genome sequences of Cyberlindnera fabianii 65, Pichia kudriavzevii 129, and Saccharomyces cerevisiae 131 isolated from fermented masau fruits in Zimbabwe.

Cyberlindnera fabianii 65, Pichia kudriavzevii 129, and Saccharomyces cerevisiae 131 have been isolated from the microbiota of fermented masau fruits. C. fabianii and P. kudriavzevii especially harbor promising features for biotechnology and food applications. Here, we present the draft annotated genome sequences of these isolates. Copyright © 2017 van Rijswijck et al.


July 7, 2019  |  

Metabolic modeling of energy balances in Mycoplasma hyopneumoniae shows that pyruvate addition increases growth rate.

Mycoplasma hyopneumoniae is cultured on large-scale to produce antigen for inactivated whole-cell vaccines against respiratory disease in pigs. However, the fastidious nutrient requirements of this minimal bacterium and the low growth rate make it challenging to reach sufficient biomass yield for antigen production. In this study, we sequenced the genome of M. hyopneumoniae strain 11 and constructed a high quality constraint-based genome-scale metabolic model of 284 chemical reactions and 298 metabolites. We validated the model with time-series data of duplicate fermentation cultures to aim for an integrated model describing the dynamic profiles measured in fermentations. The model predicted that 84% of cellular energy in a standard M. hyopneumoniae cultivation was used for non-growth associated maintenance and only 16% of cellular energy was used for growth and growth associated maintenance. Following a cycle of model-driven experimentation in dedicated fermentation experiments, we were able to increase the fraction of cellular energy used for growth through pyruvate addition to the medium. This increase in turn led to an increase in growth rate and a 2.3 times increase in the total biomass concentration reached after 3-4 days of fermentation, enhancing the productivity of the overall process. The model presented provides a solid basis to understand and further improve M. hyopneumoniae fermentation processes. Biotechnol. Bioeng. 2017;114: 2339-2347. © 2017 Wiley Periodicals, Inc.© 2017 Wiley Periodicals, Inc.


July 7, 2019  |  

Coping with living in the soil: the genome of the parthenogenetic springtail Folsomia candida.

Folsomia candida is a model in soil biology, belonging to the family of Isotomidae, subclass Collembola. It reproduces parthenogenetically in the presence of Wolbachia, and exhibits remarkable physiological adaptations to stress. To better understand these features and adaptations to life in the soil, we studied its genome in the context of its parthenogenetic lifestyle.We applied Pacific Bioscience sequencing and assembly to generate a reference genome for F. candida of 221.7 Mbp, comprising only 162 scaffolds. The complete genome of its endosymbiont Wolbachia, was also assembled and turned out to be the largest strain identified so far. Substantial gene family expansions and lineage-specific gene clusters were linked to stress response. A large number of genes (809) were acquired by horizontal gene transfer. A substantial fraction of these genes are involved in lignocellulose degradation. Also, the presence of genes involved in antibiotic biosynthesis was confirmed. Intra-genomic rearrangements of collinear gene clusters were observed, of which 11 were organized as palindromes. The Hox gene cluster of F. candida showed major rearrangements compared to arthropod consensus cluster, resulting in a disorganized cluster.The expansion of stress response gene families suggests that stress defense was important to facilitate colonization of soils. The large number of HGT genes related to lignocellulose degradation could be beneficial to unlock carbohydrate sources in soil, especially those contained in decaying plant and fungal organic matter. Intra- as well as inter-scaffold duplications of gene clusters may be a consequence of its parthenogenetic lifestyle. This high quality genome will be instrumental for evolutionary biologists investigating deep phylogenetic lineages among arthropods and will provide the basis for a more mechanistic understanding in soil ecology and ecotoxicology.


July 7, 2019  |  

Complete genome sequences of Lactococcus lactis subsp. lactis bv. diacetylactis FM03 and Leuconostoc mesenteroides FM06 isolated from cheese.

Here, the genome sequences of Lactococcus lactis subsp. lactis bv. diacetylactis FM03 and Leuconostoc mesenteroides FM06, both isolated from cheese, are presented. FM03 and FM06 contain 7 and 3 plasmids, respectively, that carry genes encoding functions important for growth and survival in dairy fermentations. Copyright © 2017 van Mastrigt et al.


July 7, 2019  |  

A high-coverage draft genome of the mycalesine butterfly Bicyclus anynana.

The mycalesine butterfly Bicyclus anynana , the ‘Squinting bush brown’, is a model organism in the study of lepidopteran ecology, development and evolution. Here, we present a draft genome sequence for B. anynana to serve as a genomics resource for current and future studies of this important model species.Seven libraries with insert sizes ranging from 350 bp to 20 kb were constructed using DNA from an inbred female and sequenced using both Illumina and PacBio technology. 128 Gb raw Illumina data were filtered to 124 Gb and assembled to a final size of 475 Mb (~260X assembly coverage). Contigs were scaffolded using mate-pair, transcriptome and PacBio data into 10,800 sequences with an N50 of 638 kb (longest scaffold 5 Mb). The genome is comprised of 26% repetitive elements, and encodes a total of 22,642 predicted protein-coding genes. Recovery of a BUSCO set of core metazoan genes was almost complete (98%). Overall, these metrics compare well with other recently published lepidopteran genomes.We report a high-quality draft genome sequence for Bicyclus anynana . The genome assembly and annotated gene models are available at LepBase ( http://ensembl.lepbase.org/index.html ).


July 7, 2019  |  

A small secreted protein in Zymoseptoria tritici is responsible for avirulence on wheat cultivars carrying the Stb6 resistance gene.

Zymoseptoria tritici is the causal agent of Septoria tritici blotch, a major pathogen of wheat globally and the most damaging pathogen of wheat in Europe. A gene-for-gene (GFG) interaction between Z. tritici and wheat cultivars carrying the Stb6 resistance gene has been postulated for many years, but the genes have not been identified. We identified AvrStb6 by combining quantitative trait locus mapping in a cross between two Swiss strains with a genome-wide association study using a natural population of c. 100 strains from France. We functionally validated AvrStb6 using ectopic transformations. AvrStb6 encodes a small, cysteine-rich, secreted protein that produces an avirulence phenotype on wheat cultivars carrying the Stb6 resistance gene. We found 16 nonsynonymous single nucleotide polymorphisms among the tested strains, indicating that AvrStb6 is evolving very rapidly. AvrStb6 is located in a highly polymorphic subtelomeric region and is surrounded by transposable elements, which may facilitate its rapid evolution to overcome Stb6 resistance. AvrStb6 is the first avirulence gene to be functionally validated in Z. tritici, contributing to our understanding of avirulence in apoplastic pathogens and the mechanisms underlying GFG interactions between Z. tritici and wheat. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.


July 7, 2019  |  

Genomic and functional analysis of Romboutsia ilealis CRIBT reveals adaptation to the small intestine.

The microbiota in the small intestine relies on their capacity to rapidly import and ferment available carbohydrates to survive in a complex and highly competitive ecosystem. Understanding how these communities function requires elucidating the role of its key players, the interactions among them and with their environment/host.The genome of the gut bacterium Romboutsia ilealis CRIBT was sequenced with multiple technologies (Illumina paired-end, mate-pair and PacBio). The transcriptome was sequenced (Illumina HiSeq) after growth on three different carbohydrate sources, and short chain fatty acids were measured via HPLC.We present the complete genome of Romboutsia ilealis CRIBT, a natural inhabitant and key player of the small intestine of rats. R. ilealis CRIBT possesses a circular chromosome of 2,581,778 bp and a plasmid of 6,145 bp, carrying 2,351 and eight predicted protein coding sequences, respectively. Analysis of the genome revealed limited capacity to synthesize amino acids and vitamins, whereas multiple and partially redundant pathways for the utilization of different relatively simple carbohydrates are present. Transcriptome analysis allowed identification of the key components in the degradation of glucose, L-fucose and fructo-oligosaccharides.This revealed that R. ilealis CRIBT is adapted to a nutrient-rich environment where carbohydrates, amino acids and vitamins are abundantly available.


July 7, 2019  |  

Genome and plasmid sequences of Escherichia coli KV7, an extended-spectrum ß-lactamase isolate derived from feces of a healthy pig.

We present single-contig assemblies for Escherichia coli strain KV7 (serotype O27, phylogenetic group D) and its six plasmids, isolated from a healthy pig, as determined by PacBio RS II and Illumina MiSeq sequencing. The chromosome of 4,997,475 bp and G+C content of 50.75% harbored 4,540 protein-encoding genes. Copyright © 2017 Bateman et al.


July 7, 2019  |  

Complete genome sequence of Eubacterium hallii strain L2-7.

The complete genome sequence of Eubacterium hallii strain L2-7 is reported here. This intestinal strain produces butyrate from glucose as well as lactate when acetate is provided in the growth medium. In addition, strain L2-7 has been shown to improve insulin sensitivity in db/db mice, indicating its application potential. Copyright © 2017 Shetty et al.


July 7, 2019  |  

Complete genome sequence of Streptococcus salivarius HSISS4, a human commensal bacterium highly prevalent in the digestive tract.

The human commensal bacterium Streptococcus salivarius plays a major role in the equilibrium of microbial communities of the digestive tract. Here, we report the first complete genome sequence of a Streptococcus salivarius strain isolated from the small intestine, namely, HSISS4. Its circular chromosome comprises 1,903 coding sequences and 2,100,988 nucleotides. Copyright © 2016 Mignolet et al.


July 7, 2019  |  

Campylobacter fetus subspecies contain conserved type IV secretion systems on multiple genomic islands and plasmids.

The features contributing to differences in pathogenicity of the Campylobacter fetus subspecies are unknown. Putative factors involved in pathogenesis are located in genomic islands that encode a type IV secretion system (T4SS) and fic domain (filamentation induced by cyclic AMP) proteins, which may disrupt host cell processes. In the genomes of 27 C. fetus strains, three phylogenetically-different T4SS-encoding regions (T4SSs) were identified: one was located in both the chromosome and in extra-chromosomal plasmids; one was located exclusively in the chromosome; and one exclusively in extra-chromosomal plasmids. We observed that C. fetus strains can contain multiple T4SSs and that homologous T4SSs can be present both in chromosomal genomic islands (GI) and on plasmids in the C. fetus strains. The GIs of the chromosomally located T4SS differed mainly by the presence of fic genes, insertion sequence elements and phage-related or hypothetical proteins. Comparative analysis showed that T4SS sequences, inserted in the same locations, were conserved in the studied C. fetus genomes. Using phylogenetic analysis of the T4SSs, it was shown that C. fetus may have acquired the T4SS regions from other Campylobacter species by horizontal gene transfer. The identified T4SSs and fic genes were found in Cff and Cfv strains, although the presence of T4SSs and fic genes were significantly associated with Cfv strains. The T4SSs and fic genes could not be associated with S-layer serotypes or geographical origin of the strains.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.