Menu
September 22, 2019  |  

Insights into the evolution of host association through the isolation and characterization of a novel human periodontal pathobiont, Desulfobulbus oralis.

The human oral microbiota encompasses representatives of many bacterial lineages that have not yet been cultured. Here we describe the isolation and characterization of previously uncultured Desulfobulbus oralis, the first human-associated representative of its genus. As mammalian-associated microbes rarely have free-living close relatives, D. oralis provides opportunities to study how bacteria adapt and evolve within a host. This sulfate-reducing deltaproteobacterium has adapted to the human oral subgingival niche by curtailing its physiological repertoire, losing some biosynthetic abilities and metabolic independence, and by dramatically reducing environmental sensing and signaling capabilities. The genes that enable free-living Desulfobulbus to synthesize the potent neurotoxin methylmercury were also lost by D. oralis, a notably positive outcome of host association. However, horizontal gene acquisitions from other members of the microbiota provided novel mechanisms of interaction with the human host, including toxins like leukotoxin and hemolysins. Proteomic and transcriptomic analysis revealed that most of those factors are actively expressed, including in the subgingival environment, and some are secreted. Similar to other known oral pathobionts, D. oralis can trigger a proinflammatory response in oral epithelial cells, suggesting a direct role in the development of periodontal disease.IMPORTANCE Animal-associated microbiota likely assembled as a result of numerous independent colonization events by free-living microbes followed by coevolution with their host and other microbes. Through specific adaptation to various body sites and physiological niches, microbes have a wide range of contributions, from beneficial to disease causing. Desulfobulbus oralis provides insights into genomic and physiological transformations associated with transition from an open environment to a host-dependent lifestyle and the emergence of pathogenicity. Through a multifaceted mechanism triggering a proinflammatory response, D. oralis is a novel periodontal pathobiont. Even though culture-independent approaches can provide insights into the potential role of the human microbiome “dark matter,” cultivation and experimental characterization remain important to studying the roles of individual organisms in health and disease.


September 22, 2019  |  

The genome sequence of a new strain of Mycobacterium ulcerans ecovar Liflandii, emerging as a sturgeon pathogen

Mycobacterium ulcerans ecovar Liflandii (MuLiflandii) is emerging as a non-mycobacterial pathogen in amphibians. Here, we make the first report on the prevalence of a new strain of MuLiflandii infection in Chinese sturgeon. All the diseased fish showed the classic clinical symptoms of ascites and/or muscle ulceration. A new slow-growing and acid-fast bacillus ASM001 strain was obtained from the ascites of infected fish; this strain demonstrated pathogenicity when tested in hybrid sturgeon. The complete genome sequence of MuLiflandii ASM001 is a circular chromosome of 6,167,296?bp, with a G?+?C content of 65.57%, containing 4518 predicted coding DNA sequences and 999 pseudo-genes, 3 rRNA operons, and 47 transfer RNA sequences. In addition, we found 245 copies of IS2404, 34 microsatellites, and 36 CRISPR sequences in the whole MuLiflandii ASM001 genome. Among the predicted genes of MuLiflandii ASM001, we found orthologs of 203 virulence factors of clinical MuLiflandii 128FXT operating in host cell invasion, modulation of phagocyte function, and survival inside the macrophages. These virulence factor candidates provide a key basis for understanding their pathogenic mechanisms at the molecular level. A comparative analysis that used complete, existing genomes showed that MuLiflandii ASM001 has high synteny with MuLiflandii 128FXT. We anticipate the availability of the complete MuLiflandii ASM001 genome sequence will provide a valuable resource for comparative genomic studies of MuLiflandii isolates, as well as provide new insights into the host, ecological, and functional diversity of the genus Mycobacterium.


September 22, 2019  |  

Genomic diversity of Taylorella equigenitalis introduced into the United States from 1978 to 2012.

Contagious equine metritis is a disease of worldwide concern in equids. The United States is considered to be free of the disease although sporadic outbreaks have occurred over the last few decades that were thought to be associated with the importation of horses. The objective of this study was to create finished, reference quality genomes that characterize the diversity of Taylorella equigenitalis isolates introduced into the USA, and identify their differences. Five isolates of T. equigenitalis associated with introductions into the USA from unique sources were sequenced using both short and long read chemistries allowing for complete assembly and annotation. These sequences were compared to previously published genomes as well as the short read sequences of the 200 isolates in the National Veterinary Services Laboratories’ diagnostic repository to identify unique regions and genes, potential virulence factors, and characterize diversity. The 5 genomes varied in size by up to 100,000 base pairs, but averaged 1.68 megabases. The majority of that diversity in size can be explained by repeat regions and 4 main regions of difference, which ranged in size from 15,000 to 45,000 base pairs. The first region of difference contained mostly hypothetical proteins, the second contained the CRISPR, the third contained primarily hemagglutinin proteins, and the fourth contained primarily segments of a type IV secretion system. As expected and previously reported, little evidence of recombination was found within these genomes. Several additional areas of interest were also observed including a mechanism for streptomycin resistance and other virulence factors. A SNP distance comparison of the T. equigenitalis isolates and Mycobacterium tuberculosis complex (MTBC) showed that relatively, T. equigenitalis was a more diverse species than the entirety of MTBC.


September 22, 2019  |  

Comparative genomic insights into endofungal lifestyles of two bacterial endosymbionts, Mycoavidus cysteinexigens and Burkholderia rhizoxinica.

Endohyphal bacteria (EHB), dwelling within fungal hyphae, markedly affect the growth and metabolic potential of their hosts. To date, two EHB belonging to the family Burkholderiaceae have been isolated and characterized as new taxa, Burkholderia rhizoxinica (HKI 454T) and Mycoavidus cysteinexigens (B1-EBT), in Japan. Metagenome sequencing was recently reported for Mortierella elongata AG77 together with its endosymbiont M. cysteinexigens (Mc-AG77) from a soil/litter sample in the USA. In the present study, we elucidated the complete genome sequence of B1-EBT and compared it with those of Mc-AG77 and HKI 454T. The genomes of B1-EBT and Mc-AG77 contained a higher level of prophage sequences and were markedly smaller than that of HKI 454T. Although the B1-EBT and Mc-AG77 genomes lacked the chitinolytic enzyme genes responsible for invasion into fungal cells, they contained several predicted toxin-antitoxin systems including an insecticidal toxin complex and PIN domain imposing an addiction-like mechanism essential for endohyphal growth control during host colonization. Despite the different host fungi, the alignment of amino acid sequences showed that the HKI 454T genome consisted of 1,265 (32.6%) and 1,221 (31.5%) orthologous coding sequences (CDSs) with those of B1-EBT and Mc-AG77, respectively. This comparative study of three phylogenetically associated endosymbionts has provided insights into their origin and evolution, and suggests the later bacterial invasion and adaptation of B1-EBT to its host metabolism.


September 22, 2019  |  

Characterization of Lactobacillus amylolyticus L6 as potential probiotics based on genome sequence and corresponding phenotypes

The potential of newly isolated Lactobacillus amylolyticus L6 as probiotics was investigated based on the whole genome sequence and corresponding phenotypes. With Lactobacillus acidophilus NCFM as positive control, several established methods of evaluating potential probiotics were performed on L. amylolyticus L6. The results indicated that L. amylolyticus L6 retained higher viability in human gastrointestinal (GI) tract and it also had strong inhibitory effect on pathogenic bacteria. Meanwhile, the candidate probiotics exhibited similar adhesion level as that of L. acidophilus NCFM in vitro test. As for carbohydrate utilization profile, L. amylolyticus L6 had high ability of utilizing raffinose and stachyose which were known as flatulence factors in soybean products. And this strain could also utilize starch. Besides, the mechanisms of probiotic and metabolic properties for L. amylolyticus L6 were further illustrated with the identification of related genes through the analysis of genome sequence. Therefore, we proposed that L. amylolyticus L6 have the potential to be used as probiotics from phenotypes to genotypes. And it is the first time that the complete genome sequence of L. amylolyticus L6 and the potential of this strain to be used as probiotics were reported in this study.


September 22, 2019  |  

Secretome analysis identifies potential pathogenicity/virulence factors of Tilletia indica, a quarantined fungal pathogen inciting Karnal bunt disease in wheat.

Tilletia indica is a smut fungus that incites Karnal bunt in wheat. It has been considered as quarantine pest in more than 70 countries. Despite its quarantine significance, there is meager knowledge regarding the molecular mechanisms of disease pathogenesis. Moreover, various disease management strategies have proven futile. Development of effective disease management strategy requires identification of pathogenicity/virulence factors. With this aim, the present study was conducted to compare the secretomes of T. indica isolates, that is, highly (TiK) and low (TiP) virulent isolates. About 120 and 95 protein spots were detected reproducibly in TiK and TiP secretome gel images. Nineteen protein spots, which were consistently observed as upregulated/differential in the secretome of TiK isolate, were selected for their identification by MALDI-TOF/TOF. Identified proteins exhibited homology with fungal proteins playing important role in fungal adhesion, penetration, invasion, protection against host-derived reactive oxygen species, production of virulence factors, cellular signaling, and degradation of host cell wall proteins and antifungal proteins. These results were complemented with T. indica genome sequence leading to identification of candidate pathogenicity/virulence factors homologs that were further subjected to sequence- and structure-based functional annotation. Thus, present study reports the first comparative secretome analysis of T. indica for identification of pathogenicity/virulence factors. This would provide insights into pathogenic mechanisms of T. indica and aid in devising effective disease management strategies.© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.


September 22, 2019  |  

Comparative genomics of smut pathogens: Insights from orphans and positively selected genes into host specialization.

Host specialization is a key evolutionary process for the diversification and emergence of new pathogens. However, the molecular determinants of host range are poorly understood. Smut fungi are biotrophic pathogens that have distinct and narrow host ranges based on largely unknown genetic determinants. Hence, we aimed to expand comparative genomics analyses of smut fungi by including more species infecting different hosts and to define orphans and positively selected genes to gain further insights into the genetics basis of host specialization. We analyzed nine lineages of smut fungi isolated from eight crop and non-crop hosts: maize, barley, sugarcane, wheat, oats, Zizania latifolia (Manchurian rice), Echinochloa colona (a wild grass), and Persicaria sp. (a wild dicot plant). We assembled two new genomes: Ustilago hordei (strain Uhor01) isolated from oats and U. tritici (strain CBS 119.19) isolated from wheat. The smut genomes were of small sizes, ranging from 18.38 to 24.63 Mb. U. hordei species experienced genome expansions due to the proliferation of transposable elements and the amount of these elements varied among the two strains. Phylogenetic analysis confirmed that Ustilago is not a monophyletic genus and, furthermore, detected misclassification of the U. tritici specimen. The comparison between smut pathogens of crop and non-crop hosts did not reveal distinct signatures, suggesting that host domestication did not play a dominant role in shaping the evolution of smuts. We found that host specialization in smut fungi likely has a complex genetic basis: different functional categories were enriched in orphans and lineage-specific selected genes. The diversification and gain/loss of effector genes are probably the most important determinants of host specificity.


September 22, 2019  |  

Plasmid-mediated quinolone resistance in Shigella flexneriisolated from macaques.

Non-human primates (NHPs) for biomedical research are commonly infected with Shigella spp. that can cause acute dysentery or chronic episodic diarrhea. These animals are often prophylactically and clinically treated with quinolone antibiotics to eradicate these possible infections. However, chromosomally- and plasmid-mediated antibiotic resistance has become an emerging concern for species in the family Enterobacteriaceae. In this study, five individual isolates of multi-drug resistant Shigella flexneri were isolated from the feces of three macaques. Antibiotic susceptibility testing confirmed resistance or decreased susceptibility to ampicillin, amoxicillin-clavulanic acid, cephalosporins, gentamicin, tetracycline, ciprofloxacin, enrofloxacin, levofloxacin, and nalidixic acid. S. flexneri isolates were susceptible to trimethoprim-sulfamethoxazole, and this drug was used to eradicate infection in two of the macaques. Plasmid DNA from all isolates was positive for the plasmid-encoded quinolone resistance gene qnrS, but not qnrA and qnrB. Conjugation and transformation of plasmid DNA from several S. flexneri isolates into antibiotic-susceptible Escherichia coli strains conferred the recipients with resistance or decreased susceptibility to quinolones and beta-lactams. Genome sequencing of two representative S. flexneri isolates identified the qnrS gene on a plasmid-like contig. These contigs showed >99% homology to plasmid sequences previously characterized from quinolone-resistant Shigella flexneri 2a and Salmonella enterica strains. Other antibiotic resistance genes and virulence factor genes were also identified in chromosome and plasmid sequences in these genomes. The findings from this study indicate macaques harbor pathogenic S. flexneri strains with chromosomally- and plasmid-encoded antibiotic resistance genes. To our knowledge, this is the first report of plasmid-mediated quinolone resistance in S. flexneri isolated from NHPs and warrants isolation and antibiotic testing of enteric pathogens before treating macaques with quinolones prophylactically or therapeutically.


September 22, 2019  |  

Identification and pathogenomic analysis of an Escherichia coli strain producing a novel Shiga toxin 2 subtype.

Shiga toxin (Stx) is the key virulent factor in Shiga toxin-producing Escherichia coli (STEC). To date, three Stx1 subtypes and seven Stx2 subtypes have been described in E. coli, which differed in receptor preference and toxin potency. Here, we identified a novel Stx2 subtype designated Stx2h in E. coli strains isolated from wild marmots in the Qinghai-Tibetan plateau, China. Stx2h shares 91.9% nucleic acid sequence identity and 92.9% amino acid identity to the nearest Stx2 subtype. The expression of Stx2h in type strain STEC299 was inducible by mitomycin C, and culture supernatant from STEC299 was cytotoxic to Vero cells. The Stx2h converting prophage was unique in terms of insertion site and genetic composition. Whole genome-based phylo- and patho-genomic analysis revealed STEC299 was closer to other pathotypes of E. coli than STEC, and possesses virulence factors from other pathotypes. Our finding enlarges the pool of Stx2 subtypes and highlights the extraordinary genomic plasticity of E. coli strains. As the emergence of new Shiga toxin genotypes and new Stx-producing pathotypes pose a great threat to the public health, Stx2h should be further included in E. coli molecular typing, and in epidemiological surveillance of E. coli infections.


September 22, 2019  |  

Multi-omics approach identifies novel pathogen-derived prognostic biomarkers in patients with Pseudomonas aeruginosa bloodstream infection

Pseudomonas aeruginosa is a human pathogen that causes health-care associated blood stream infections (BSI). Although P. aeruginosa BSI are associated with high mortality rates, the clinical relevance of pathogen-derived prognostic biomarker to identify patients at risk for unfavorable outcome remains largely unexplored. We found novel pathogen-derived prognostic biomarker candidates by applying a multi-omics approach on a multicenter sepsis patient cohort. Multi-level Cox regression was used to investigate the relation between patient characteristics and pathogen features (2298 accessory genes, 1078 core protein levels, 107 parsimony-informative variations in reported virulence factors) with 30-day mortality. Our analysis revealed that presence of the helP gene encoding a putative DEAD-box helicase was independently associated with a fatal outcome (hazard ratio 2.01, p = 0.05). helP is located within a region related to the pathogenicity island PAPI-1 in close proximity to a pil gene cluster, which has been associated with horizontal gene transfer. Besides helP, elevated protein levels of the bacterial flagellum protein FliL (hazard ratio 3.44, p < 0.001) and of a bacterioferritin-like protein (hazard ratio 1.74, p = 0.003) increased the risk of death, while high protein levels of a putative aminotransferase were associated with an improved outcome (hazard ratio 0.12, p < 0.001). The prognostic potential of biomarker candidates and clinical factors was confirmed with different machine learning approaches using training and hold-out datasets. The helP genotype appeared the most attractive biomarker for clinical risk stratification due to its relevant predictive power and ease of detection.


September 22, 2019  |  

Complete genomic analysis of a Salmonella enterica Serovar Typhimurium isolate cultured from ready-to-eat pork in China carrying one large plasmid containing mcr-1.

One mcr-1-carrying ST34-type Salmonella Typhimurium WW012 was cultured from 3,200 ready-to-eat (RTE) pork samples in 2014 in China. Broth dilution method was applied to obtain the antimicrobial susceptibility of Salmonella Typhimurium WW012. Broth matting assays were carried out to detect transferability of this phenotype and whole-genome sequencing was performed to analyze its genomic characteristic. Thirty out of 3,200 RTE samples were positive for Salmonella and the three most frequent serotypes were identified as S. Derby (n = 8), S. Typhimurium (n = 6), and S. Enteritidis (n = 6). One S. Typhimurium isolate (S. Typhimurium WW012) cultured from RTE prepared pork was found to contain the mcr-1 gene. S. Typhimurium WW012 expressed a level of high resistance to seven different antimicrobial compounds in addition to colistin (MIC = 8 mg/L). A single plasmid, pWW012 (151,609-bp) was identified and found to be of an IncHI2/HI2A type that encoded a mcr-1 gene along with six additional antimicrobial resistance genes. Plasmid pWW012 contained an IS30-mcr-1-orf-orf-IS30 composite transposon that can be successfully transferred to Escherichia coli J53. When assessed further, the latter demonstrated considerable similarity to three plasmids pHYEC7-mcr-1, pSCC4, and pHNSHP45-2, respectively. Furthermore, plasmid pWW012 also contained a multidrug resistance (MDR) genetic structure IS26-aadA2-cmlA2-aadA1-IS406-sul3-IS26-dfrA12-aadA2-IS26, which showed high similarity to two plasmids, pHNLDF400 and pHNSHP45-2, respectively. Moreover, genes mapping to the chromosome (4,991,167-bp) were found to carry 28 mutations, related to two component regulatory systems (pmrAB, phoPQ) leading to modifications of lipid A component of the lipopolysaccharide structure. Additionally, one mutation (D87N) in the quinolone resistance determining region (QRDR) gene of gyrA was identified in this mcr-1 harboring S. Typhimurium. In addition, various virulence factors and heavy metal resistance-encoding genes were also identified on the genome of S. Typhimurium WW012. This is the first report of the complete nucleotide sequence of mcr-1-carrying MDR S. Typhimurium strain from RTE pork in China.


September 22, 2019  |  

CagY-dependent regulation of type IV secretion in Helicobacter pylori is associated with alterations in integrin binding.

Strains of Helicobacter pylori that cause ulcer or gastric cancer typically express a type IV secretion system (T4SS) encoded by the cag pathogenicity island (cagPAI). CagY is an ortholog of VirB10 that, unlike other VirB10 orthologs, has a large middle repeat region (MRR) with extensive repetitive sequence motifs, which undergo CD4+ T cell-dependent recombination during infection of mice. Recombination in the CagY MRR reduces T4SS function, diminishes the host inflammatory response, and enables the bacteria to colonize at a higher density. Since CagY is known to bind human a5ß1 integrin, we tested the hypothesis that recombination in the CagY MRR regulates T4SS function by modulating binding to a5ß1 integrin. Using a cell-free microfluidic assay, we found that H. pylori binding to a5ß1 integrin under shear flow is dependent on the CagY MRR, but independent of the presence of the T4SS pili, which are only formed when H. pylori is in contact with host cells. Similarly, expression of CagY in the absence of other T4SS genes was necessary and sufficient for whole bacterial cell binding to a5ß1 integrin. Bacteria with variant cagY alleles that reduced T4SS function showed comparable reduction in binding to a5ß1 integrin, although CagY was still expressed on the bacterial surface. We speculate that cagY-dependent modulation of H. pylori T4SS function is mediated by alterations in binding to a5ß1 integrin, which in turn regulates the host inflammatory response so as to maximize persistent infection.IMPORTANCE Infection with H. pylori can cause peptic ulcers and is the most important risk factor for gastric cancer, the third most common cause of cancer death worldwide. The major H. pylori virulence factor that determines whether infection causes disease or asymptomatic colonization is the type IV secretion system (T4SS), a sort of molecular syringe that injects bacterial products into gastric epithelial cells and alters host cell physiology. We previously showed that recombination in CagY, an essential T4SS component, modulates the function of the T4SS. Here we found that these recombination events produce parallel changes in specific binding to a5ß1 integrin, a host cell receptor that is essential for T4SS-dependent translocation of bacterial effectors. We propose that CagY-dependent binding to a5ß1 integrin acts like a molecular rheostat that alters T4SS function and modulates the host immune response to promote persistent infection. Copyright © 2018 Skoog et al.


September 22, 2019  |  

Integrated proteomics, genomics, metabolomics approaches reveal oxalic acid as pathogenicity factor in Tilletia indica inciting Karnal bunt disease of wheat.

Tilletia indica incites Karnal bunt (KB) disease in wheat. To date, no KB resistant wheat cultivar could be developed due to non-availability of potential biomarkers related to pathogenicity/virulence for screening of resistant wheat genotypes. The present study was carried out to compare the proteomes of T. indica highly (TiK) and low (TiP) virulent isolates. Twenty one protein spots consistently observed as up-regulated/differential in the TiK proteome were selected for identification by MALDI-TOF/TOF. Identified sequences showed homology with fungal proteins playing essential role in plant infection and pathogen survival, including stress response, adhesion, fungal penetration, invasion, colonization, degradation of host cell wall, signal transduction pathway. These results were integrated with T. indica genome sequence for identification of homologs of candidate pathogenicity/virulence related proteins. Protein identified in TiK isolate as malate dehydrogenase that converts malate to oxaloacetate which is precursor of oxalic acid. Oxalic acid is key pathogenicity factor in phytopathogenic fungi. These results were validated by GC-MS based metabolic profiling of T. indica isolates indicating that oxalic acid was exclusively identified in TiK isolate. Thus, integrated omics approaches leads to identification of pathogenicity/virulence factor(s) that would provide insights into pathogenic mechanisms of fungi and aid in devising effective disease management strategies.


September 22, 2019  |  

Genome-wide analysis of Mycoplasma bovirhinis GS01 reveals potential virulence factors and phylogenetic relationships.

Mycoplasma bovirhinis is a significant etiology in bovine pneumonia and mastitis, but our knowledge about the genetic and pathogenic mechanisms of M. bovirhinis is very limited. In this study, we sequenced the complete genome of M. bovirhinis strain GS01 isolated from the nasal swab of pneumonic calves in Gansu, China, and we found that its genome forms a 847,985 bp single circular chromosome with a GC content of 27.57% and with 707 protein-coding genes. The putative virulence determinants of M. bovirhinis were then analyzed. Results showed that three genomic islands and 16 putative virulence genes, including one adhesion gene enolase, seven surface lipoproteins, proteins involved in glycerol metabolism, and cation transporters, might be potential virulence factors. Glycerol and pyruvate metabolic pathways were defective. Comparative analysis revealed remarkable genome variations between GS01 and a recently reported HAZ141_2 strain, and extremely low homology with others mycoplasma species. Phylogenetic analysis demonstrated that M. bovirhinis was most genetically close to M. canis, distant from other bovine Mycoplasma species. Genomic dissection may provide useful information on the pathogenic mechanisms and genetics of M. bovirhinis. Copyright © 2018 Chen et al.


September 22, 2019  |  

Whole genome analysis reveals the diversity and evolutionary relationships between necrotic enteritis-causing strains of Clostridium perfringens.

Clostridium perfringens causes a range of diseases in animals and humans including necrotic enteritis in chickens and food poisoning and gas gangrene in humans. Necrotic enteritis is of concern in commercial chicken production due to the cost of the implementation of infection control measures and to productivity losses. This study has focused on the genomic analysis of a range of chicken-derived C. perfringens isolates, from around the world and from different years. The genomes were sequenced and compared with 20 genomes available from public databases, which were from a diverse collection of isolates from chickens, other animals, and humans. We used a distance based phylogeny that was constructed based on gene content rather than sequence identity. Similarity between strains was defined as the number of genes that they have in common divided by their total number of genes. In this type of phylogenetic analysis, evolutionary distance can be interpreted in terms of evolutionary events such as acquisition and loss of genes, whereas the underlying properties (the gene content) can be interpreted in terms of function. We also compared these methods to the sequence-based phylogeny of the core genome.Distinct pathogenic clades of necrotic enteritis-causing C. perfringens were identified. They were characterised by variable regions encoded on the chromosome, with predicted roles in capsule production, adhesion, inhibition of related strains, phage integration, and metabolism. Some strains have almost identical genomes, even though they were isolated from different geographic regions at various times, while other highly distant genomes appear to result in similar outcomes with regard to virulence and pathogenesis.The high level of diversity in chicken isolates suggests there is no reliable factor that defines a chicken strain of C. perfringens, however, disease-causing strains can be defined by the presence of netB-encoding plasmids. This study reveals that horizontal gene transfer appears to play a significant role in genetic variation of the C. perfringens chromosome as well as the plasmid content within strains.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.