Menu
July 7, 2019  |  

Complete genome sequence of Serratia multitudinisentens RB-25(T), a novel chitinolytic bacterium.

Serratia multitudinisentens RB-25(T) (=DSM 28811(T) =LMG 28304(T)) is a newly proposed type strain in the genus of Serratia isolated from a municipal landfill site. Here, we present the complete genome of S. multitudinisentens RB-25(T) which contains a complete chitinase operon and other chitin and N-acetylglucosamine utilisation enzymes. To our knowledge, this is the first report of the complete genome sequence of this novel isolate and its chitinase gene discovery. Copyright © 2015 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Complete genome of the potential thermozyme producer Anoxybacillus gonensis G2(T) isolated from the Gönen hot springs in Turkey.

Anoxybacillus gonensis type strain G2(T) (=NCIMB 13,933(T) =NCCB 100040(T)) has been isolated from the Gönen hot springs in Turkey. This strain produces a number of well-studied, biotechnologically important enzymes, including xylose isomerase, carboxylesterase, and fructose-1,6-bisphosphate aldolase. In addition, this strain is an excellent candidate for the bioremediation of areas with heavy metal pollution. Here, we present a high-quality, annotated, complete genome of A. gonensis G2(T). Furthermore, this report provides insights into several novel enzymes of strain G2(T) and their potential industrial applications. Copyright © 2015 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Complete genome sequencing of Pandoraea pnomenusa RB38 and molecular characterization of its N-acyl homoserine lactone synthase gene ppnI.

In this study, we sequenced the genome of Pandoraea pnomenusa RB38 using Pacific Biosciences RSII (PacBio) Single Molecule Real Time (SMRT) sequencing technology. A pair of cognate luxI/R homologs was identified where the luxI homolog, ppnI, was found adjacent to a luxR homolog, ppnR1. An additional orphan luxR homolog, ppnR2, was also discovered. Multiple sequence alignment and phylogenetic analysis revealed that ppnI is an N-acyl homoserine lactone (AHL) synthase gene that is distinct from those of the nearest phylogenetic neighbor viz. Burkholderia spp. High resolution tandem mass spectrometry (LC-MS/MS) analysis showed that Escherichia coli BL21 harboring ppnI produced a similar AHL profile (N-octanoylhomoserine lactone, C8-HSL) as P. pnomenusa RB38, the wild-type donor strain, confirming that PpnI directed the synthesis of AHL in P. pnomenusa RB38. To our knowledge, this is the first documentation of the luxI/R homologs of the genus Pandoraea.


July 7, 2019  |  

Complete genome sequence of Serratia fonticola DSM 4576(T), a potential plant growth promoting bacterium.

Here, we present the first complete genome sequence of Serratia fonticola DSM 4576(T), a potential plant growth promoting (PGP) bacterium which confers solubilization of inorganic phosphate, indole-3-acetic acid production, hydrogen cyanideproduction, siderophore production and assimilation of ammonia through the glutamate synthase (GS/GOGAT) pathway. This genome sequence is valuable for functional genomics and ecological studies which are related to PGP and biocontrol activities. Copyright © 2015 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Complete genome of Pandoraea pnomenusa RB-38, an oxalotrophic bacterium isolated from municipal solid waste landfill site.

Pandoraea pnomenusa RB-38 is a bacterium isolated from a former sanitary landfill site. Here, we present the complete genome of P. pnomenusa RB38 in which an oxalate utilization pathway was identified. The genome analysis suggested the potential of this strain as an effective biocontrol agent against oxalate-producing phytopathogens. Copyright © 2015 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Population genomics reveals additive and replacing horizontal gene transfers in the emerging pathogen Dickeya solani.

Dickeya solani is an emerging pathogen that causes soft rot and blackleg diseases in several crops including Solanum tuberosum, but little is known about its genomic diversity and evolution.We combined Illumina and PacBio technologies to complete the genome sequence of D. solani strain 3337 that was used as a reference to compare with 19 other genomes (including that of the type strain IPO2222(T)) which were generated by Illumina technology. This population genomic analysis highlighted an unexpected variability among D. solani isolates since it led to the characterization of two distinct sub-groups within the D. solani species. This approach also revealed different types of variations such as scattered SNP/InDel variations as well as replacing and additive horizontal gene transfers (HGT). Infra-species (between the two D. solani sub-groups) and inter-species (between D. solani and D. dianthicola) replacing HGTs were observed. Finally, this work pointed that genetic and functional variation in the motility trait could contribute to aggressiveness variability in D. solani.This work revealed that D. solani genomic variability may be caused by SNPs/InDels as well as replacing and additive HGT events, including plasmid acquisition; hence the D. solani genomes are more dynamic than that were previously proposed. This work alerts on precautions in molecular diagnosis of this emerging pathogen.


July 7, 2019  |  

Complete genome sequence of Pandoraea oxalativorans DSM 23570(T), an oxalate metabolizing soil bacterium.

Pandoraea oxalativorans DSM 23570(T) is an oxalate-degrading bacterium that was originally isolated from soil litter near to oxalate-producing plant of the genus Oxalis. Here, we report the first complete genome of P. oxalativorans DSM 23570(T) which would allow its potential biotechnological applications to be unravelled. Copyright © 2016. Published by Elsevier B.V.


July 7, 2019  |  

Isolation of Jeotgalibacillus malaysiensis sp. nov. from a sandy beach, and emended description of the genus Jeotgalibacillus.

A Gram-stain-positive, endospore-forming, rod-shaped bacterial strain, designated D5(T), was isolated from seawater collected from a sandy beach in a southern state of Malaysia and subjected to a polyphasic taxonomic study. Sequence analysis of the 16S rRNA gene demonstrated that this isolate belongs to the genus Jeotgalibacillus, with 99.87% similarity to Jeotgalibacillus alimentarius JCM 10872(T). DNA-DNA hybridization of strain D5(T) with J. alimentarius JCM 10872(T) demonstrated 26.3% relatedness. The peptidoglycan type was A1a linked directly to L-lysine as the diamino acid. The predominant quinones identified in strain D5(T) were menaquinones MK-7 and MK-8.The major fatty acids were iso-C15:0 and anteiso-C15:0. The G+C content of its DNA was 43.0 mol%. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and sulfoquinovosyl diacylglycerol, as well as two unknown phospholipids and three unknown lipids. The phenotypic, chemotaxonomic and genotypic data indicated that strain D5(T) represents a novel species of the genus Jeotgalibacillus, for which the name Jeotgalibacillus malaysiensis sp. nov. is proposed (type strain D5(T)?= DSM 28777(T) = KCTC33550(T)). An emended description of the genus Jeotgalibacillus is also provided.


July 7, 2019  |  

Quorum sensing activity of Aeromonas caviae strain YL12, a bacterium isolated from compost.

Quorum sensing is a well-studied cell-to-cell communication method that involves a cell-density dependent regulation of genes expression mediated by signalling molecules. In this study, a bacterium isolated from a plant material compost pile was found to possess quorum sensing activity based on bioassay screening. Isolate YL12 was identified using matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry and molecular typing using rpoD gene which identified the isolate as Aeromonas caviae. High resolution tandem mass spectrometry was subsequently employed to identify the N-acyl homoserine lactone profile of Aeromonas caviae YL12 and confirmed that this isolate produced two short chain N-acyl homoserine lactones, namely C4-HSL and C6, and the production was observed to be cell density-dependent. Using the thin layer chromatography (TLC) bioassay, both AHLs were found to activate C. violaceum CV026, whereas only C6-HSL was revealed to induce bioluminescence expression of E. coli [pSB401]. The data presented in this study will be the leading steps in understanding the role of quorum sensing in Aeromonas caviae strain YL12.


July 7, 2019  |  

Genomic reconnaissance of clinical isolates of emerging human pathogen Mycobacterium abscessus reveals high evolutionary potential.

Mycobacterium abscessus (Ma) is an emerging human pathogen that causes both soft tissue infections and systemic disease. We present the first comparative whole-genome study of Ma strains isolated from patients of wide geographical origin. We found a high proportion of accessory strain-specific genes indicating an open, non-conservative pan-genome structure, and clear evidence of rapid phage-mediated evolution. Although we found fewer virulence factors in Ma compared to M. tuberculosis, our data indicated that Ma evolves rapidly and therefore should be monitored closely for the acquisition of more pathogenic traits. This comparative study provides a better understanding of Ma and forms the basis for future functional work on this important pathogen.


July 7, 2019  |  

Organellar genomes of the four-toothed moss, Tetraphis pellucida.

Mosses are the largest of the three extant clades of gametophyte-dominant land plants and remain poorly studied using comparative genomic methods. Major monophyletic moss lineages are characterised by different types of a spore dehiscence apparatus called the peristome, and the most important unsolved problem in higher-level moss systematics is the branching order of these peristomate clades. Organellar genome sequencing offers the potential to resolve this issue through the provision of both genomic structural characters and a greatly increased quantity of nucleotide substitution characters, as well as to elucidate organellar evolution in mosses. We publish and describe the chloroplast and mitochondrial genomes of Tetraphis pellucida, representative of the most phylogenetically intractable and morphologically isolated peristomate lineage.Assembly of reads from Illumina SBS and Pacific Biosciences RS sequencing reveals that the Tetraphis chloroplast genome comprises 127,489 bp and the mitochondrial genome 107,730 bp. Although genomic structures are similar to those of the small number of other known moss organellar genomes, the chloroplast lacks the petN gene (in common with Tortula ruralis) and the mitochondrion has only a non-functional pseudogenised remnant of nad7 (uniquely amongst known moss chondromes).Structural genomic features exist with the potential to be informative for phylogenetic relationships amongst the peristomate moss lineages, and thus organellar genome sequences are urgently required for exemplars from other clades. The unique genomic and morphological features of Tetraphis confirm its importance for resolving one of the major questions in land plant phylogeny and for understanding the evolution of the peristome, a likely key innovation underlying the diversity of mosses. The functional loss of nad7 from the chondrome is now shown to have occurred independently in all three bryophyte clades as well as in the early-diverging tracheophyte Huperzia squarrosa.


July 7, 2019  |  

Enterobacter asburiae strain L1: complete genome and whole genome optical mapping analysis of a quorum sensing bacterium.

Enterobacter asburiae L1 is a quorum sensing bacterium isolated from lettuce leaves. In this study, for the first time, the complete genome of E. asburiae L1 was sequenced using the single molecule real time sequencer (PacBio RSII) and the whole genome sequence was verified by using optical genome mapping (OpGen) technology. In our previous study, E. asburiae L1 has been reported to produce AHLs, suggesting the possibility of virulence factor regulation which is quorum sensing dependent. This evoked our interest to study the genome of this bacterium and here we present the complete genome of E. asburiae L1, which carries the virulence factor gene virK, the N-acyl homoserine lactone-based QS transcriptional regulator gene luxR and the N-acyl homoserine lactone synthase gene which we firstly named easI. The availability of the whole genome sequence of E. asburiae L1 will pave the way for the study of the QS-mediated gene expression in this bacterium. Hence, the importance and functions of these signaling molecules can be further studied in the hope of elucidating the mechanisms of QS-regulation in E. asburiae. To the best of our knowledge, this is the first documentation of both a complete genome sequence and the establishment of the molecular basis of QS properties of E. asburiae.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.