Menu
September 22, 2019  |  

Characterization of a novel SXT/R391 Integrative and Conjugative Element carrying cfr, blaCTX-M-65, fosA3 and aac(6′)-Ib-cr in Proteus mirabilis.

A novel 139,487-bp SXT/R391 integrative and conjugative element, ICEPmiChnBCP11, was characterized in Proteus mirabilis of swine origin in China. ICEPmiChnBCP11 harbors 20 different antimicrobial resistance genes, including the clinically important rRNA methyltransferase gene cfr, the extended-spectrum ß-lactamase gene blaCTX-M-65, fosfomycin resistance gene fosA3, and fluoroquinolone resistance gene aac(6′)-Ib-cr An ISPpu12-mediated composite transposon containing various resistance genes and 10 copies of IS26 is inserted in hot spot 4. ICEPmiChnBCP11 was successfully transferred to Escherichia coli. Copyright © 2018 American Society for Microbiology.


September 22, 2019  |  

Genomic characterization of Lactobacillus delbrueckii TUA4408L and evaluation of the antiviral activities of its extracellular polysaccharides in porcine intestinal epithelial cells.

In lactic acid bacteria, the synthesis of exopolysaccharides (EPS) has been associated with some favorable technological properties as well as health-promoting benefits. Research works have shown the potential of EPS produced by lactobacilli to differentially modulate immune responses. However, most studies were performed in immune cells and few works have concentrated in the immunomodulatory activities of EPS in non-immune cells such as intestinal epithelial cells. In addition, the cellular and molecular mechanisms involved in the immunoregulatory effects of EPS have not been studied in detail. In this work, we have performed a genomic characterization of Lactobacillus delbrueckii subsp. delbrueckii TUA4408L and evaluated the immunomodulatory and antiviral properties of its acidic (APS) and neutral (NPS) EPS in porcine intestinal epithelial (PIE) cells. Whole genome sequencing allowed the analysis of the general features of L. delbrueckii TUA4408L genome as well as the characterization of its EPS genes. A typical EPS gene cluster was found in the TUA4408L genome consisting in five highly conserved genes epsA-E, and a variable region, which includes the genes for the polymerase wzy, the flippase wzx, and seven glycosyltransferases. In addition, we demonstrated here for the first time that L. delbrueckii TUA4408L and its EPS are able to improve the resistance of PIE cells against rotavirus infection by reducing viral replication and regulating inflammatory response. Moreover, studies in PIE cells demonstrated that the TUA4408L strain and its EPS differentially modulate the antiviral innate immune response triggered by the activation of Toll-like receptor 3 (TLR3). L. delbrueckii TUA4408L and its EPS are capable of increasing the activation of interferon regulatory factor (IRF)-3 and nuclear factor ?B (NF-?B) signaling pathways leading to an improved expression of the antiviral factors interferon (IFN)-ß, Myxovirus resistance gene A (MxA) and RNaseL.


September 22, 2019  |  

Distribution of the pco gene cluster and associated genetic determinants among swine Escherichia coli from a controlled feeding trial.

Copper is used as an alternative to antibiotics for growth promotion and disease prevention. However, bacteria developed tolerance mechanisms for elevated copper concentrations, including those encoded by the pco operon in Gram-negative bacteria. Using cohorts of weaned piglets, this study showed that the supplementation of feed with copper concentrations as used in the field did not result in a significant short-term increase in the proportion of pco-positive fecal Escherichia coli. The pco and sil (silver resistance) operons were found concurrently in all screened isolates, and whole-genome sequencing showed that they were distributed among a diversity of unrelated E. coli strains. The presence of pco/sil in E. coli was not associated with elevated copper minimal inhibitory concentrations (MICs) under a variety of conditions. As found in previous studies, the pco/sil operons were part of a Tn7-like structure found both on the chromosome or on plasmids in the E. coli strains investigated. Transfer of a pco/sil IncHI2 plasmid from E. coli to Salmonellaenterica resulted in elevated copper MICs in the latter. Escherichia coli may represent a reservoir of pco/sil genes transferable to other organisms such as S. enterica, for which it may represent an advantage in the presence of copper. This, in turn, has the potential for co-selection of resistance to antibiotics.


September 22, 2019  |  

Comparative genome analysis and evaluation of probiotic characteristics of Lactobacillus plantarum strain JDFM LP11.

In the current study, the probiotic potential of approximately 250 strains of lactic acid bacteria (LAB) isolated from piglet fecal samples were investigated; among them Lactobacillus plantarum strain JDFM LP11, which possesses significant probiotic potential, with enhanced acid/bile tolerance, attachment to porcine intestinal epithelial cells (IPEC-J2), and antimicrobial activity. The genetic characteristics of strain JDFM LP11 were explored by performing whole genome sequencing (WGS) using a PacBio system. The circular draft genome have a total length of 3,206,883 bp and a total of 3,021 coding sequences were identified. Phylogenetically, three genes, possibly related to survival and metabolic activity in the porcine host, were identified. These genes encode p60, lichenan permease IIC component, and protein TsgA, which are a putative endopeptidase, a component of the phosphotransferase system (PTS), and a major facilitator in the gut environment, respectively. Our findings suggest that understanding the functional and genetic characteristics of L. plantarum strain JDFM LP11, with its candidate genes for gut health, could provide new opportunities and insights into applications in the animal food and feed additive industries.


September 22, 2019  |  

Complete genome sequence and characterization of linezolid-resistant Enterococcus faecalis clinical isolate KUB3006 carrying a cfr(B)-transposon on its chromosome and optrA-plasmid.

Linezolid (LZD) has become one of the most important antimicrobial agents for infections caused by gram-positive bacteria, including those caused by Enterococcus species. LZD-resistant (LR) genetic features include mutations in 23S rRNA/ribosomal proteins, a plasmid-borne 23S rRNA methyltransferase gene cfr, and ribosomal protection genes (optrA and poxtA). Recently, a cfr gene variant, cfr(B), was identified in a Tn6218-like transposon (Tn) in a Clostridioides difficile isolate. Here, we isolated an LR Enterococcus faecalis clinical isolate, KUB3006, from a urine specimen of a patient with urinary tract infection during hospitalization in 2017. Comparative and whole-genome analyses were performed to characterize the genetic features and overall antimicrobial resistance genes in E. faecalis isolate KUB3006. Complete genome sequencing of KUB3006 revealed that it carried cfr(B) on a chromosomal Tn6218-like element. Surprisingly, this Tn6218-like element was almost (99%) identical to that of C. difficile Ox3196, which was isolated from a human in the UK in 2012, and to that of Enterococcus faecium 5_Efcm_HA-NL, which was isolated from a human in the Netherlands in 2012. An additional oxazolidinone and phenicol resistance gene, optrA, was also identified on a plasmid. KUB3006 is sequence type (ST) 729, suggesting that it is a minor ST that has not been reported previously and is unlikely to be a high-risk E. faecalis lineage. In summary, LR E. faecalis KUB3006 possesses a notable Tn6218-like-borne cfr(B) and a plasmid-borne optrA. This finding raises further concerns regarding the potential declining effectiveness of LZD treatment in the future.


September 22, 2019  |  

Update on Tetracycline Susceptibility of Pediococcus acidilactici Based on Strains Isolated from Swiss Cheese and Whey.

Bacterial strains used as starter cultures in the production of fermented foods may act as reservoirs for antibiotic resistance (AbR) genes. To avoid the introduction of such genes into the food chain, the presence of acquired AbR in bacterial strains added to food must be tested. Standard protocols and microbiological cut-off values have been defined to provide practitioners with a basis for evaluating whether their bacterial isolates harbor an acquired resistance to a given antibiotic. Here, we tested the AbR of 24 strains of Pediococcus acidilactici by using the standard protocol and microbiological cut-off values recommended by the European Food Safety Authority. Phenotypic data were complemented by searching for known AbR genes using an in silico analysis of whole genomes. The majority (54.2%) of the strains were able to grow at a tetracycline concentration above the defined cut-off, even though only one strain carried a known tetracycline resistance gene, tetM. The same strain also carried the AbR gene of an erythromycin resistance methylase, ermA, and displayed resistance toward clindamycin and erythromycin. Our results bolster the scarce data on the sensitivity of P. acidilactici to tetracycline and suggest that the microbiological cut-off recommended by the European Food Safety Authority for this antibiotic should be amended.


September 22, 2019  |  

Antimicrobial resistance profile of mcr-1 positive clinical isolates of Escherichia coli in China From 2013 to 2016.

Multidrug-resistant (MDR) Escherichia coli poses a great challenge for public health in recent decades. Polymyxins have been reconsidered as a valuable therapeutic option for the treatment of infections caused by MDR E. coli. A plasmid-encoded colistin resistance gene mcr-1 encoding phosphoethanolamine transferase has been recently described in Enterobacteriaceae. In this study, a total of 123 E. coli isolates obtained from patients with diarrheal diseases in China were used for the genetic analysis of colistin resistance in clinical isolates. Antimicrobial resistance profile of polymyxin B (PB) and 11 commonly used antimicrobial agents were determined. Among the 123 E. coli isolates, 9 isolates (7.3%) were resistant to PB and PCR screening showed that seven (5.7%) isolates carried the mcr-1 gene. A hybrid sequencing analysis using single-molecule, real-time (SMRT) sequencing and Illumina sequencing was then performed to resolve the genomes of the seven mcr-1 positive isolates. These seven isolates harbored multiple plasmids and are MDR, with six isolates carrying one mcr-1 positive plasmid and one isolate (14EC033) carrying two mcr-1 positive plasmids. These eight mcr-1 positive plasmids belonged to the IncX4, IncI2, and IncP1 types. In addition, the mcr-1 gene was the solo antibiotic resistance gene identified in the mcr-1 positive plasmids, while the rest of the antibiotic resistance genes were mostly clustered into one or two plasmids. Interestingly, one mcr-1 positive isolate (14EC047) was susceptible to PB, and we showed that the activity of MCR-1-mediated colistin resistance was not phenotypically expressed in 14EC047 host strain. Furthermore, three isolates exhibited resistance to PB but did not carry previously reported mcr-related genes. Multilocus sequence typing (MLST) showed that these mcr-1 positive E. coli isolates belonged to five different STs, and three isolates belonged to ST301 which carried multiple virulence factors related to diarrhea. Additionally, the mcr-1 positive isolates were all susceptible to imipenem (IMP), suggesting that IMP could be used to treat infection caused by mcr-1 positive E. coli isolates. Collectively, this study showed a high occurrence of mcr-1 positive plasmids in patients with diarrheal diseases of Guangzhou in China and the abolishment of the MCR-1 mediated colistin resistance in one E. coli isolate.


September 22, 2019  |  

Prevalence, antimicrobial resistance and phylogenetic characterization of Yersinia enterocolitica in retail poultry meat and swine feces in parts of China

Yersinia enterocolitica is an enteropathogen transmitted by contaminated food. In this study, a total of 500 retail poultry meat samples from 4 provinces and 145 swine feces samples from 12 provinces in China was tested for Y. enterocolitica and 26 isolates were obtained for further bio-serotyping, testing with antimicrobial susceptibility testing to a panel of antimicrobial compounds, and genetically characterization based on the whole genome sequencing. Higher prevalence (4.8%) of Y. enterocolitica contamination in retail poultry meat than that in swine feces (2.76%) was observed. No difference in bio-serotypes, multilocus sequence typing (MLST) and virulence genes distribution between swine and poultry origin were found. All isolates were resistant to ampicillin, amoxicillin/clavulanic acid, and cefazolin and were multi-drug resistant (MDR). The most predominant drug-resistance profile was AMP-CFZ-AMC-FOX (42.31%). A pathogenic isolate with bio-serotype 3/O:3 and ST135 was cultured from retail fresh chicken meat for the first time in China. Based on the whole-genome single nucleotide polymorphisms (SNPs) tree analysis, pathogenic isolates clustered closely, while nonpathogenic isolates exhibited high genetic heterogeneity. These indicated that pathogenic isolates were conserved on genetic level. The whole-genome SNP tree also revealed that Y. enterocolitica of swine, chicken and duck origin may share a common ancestor. The findings highlight the emergence of drug-resistant pathogenic Y. entrocoliticas in retailed poultry meats in China.


September 22, 2019  |  

The unique evolution of the pig LRC, a single KIR but expansion of LILR and a novel Ig receptor family.

The leukocyte receptor complex (LRC) encodes numerous immunoglobulin (Ig)-like receptors involved in innate immunity. These include the killer-cell Ig-like receptors (KIR) and the leukocyte Ig-like receptors (LILR) which can be polymorphic and vary greatly in number between species. Using the recent long-read genome assembly, Sscrofa11.1, we have characterized the porcine LRC on chromosome 6. We identified a ~?197-kb region containing numerous LILR genes that were missing in previous assemblies. Out of 17 such LILR genes and fragments, six encode functional proteins, of which three are inhibitory and three are activating, while the majority of pseudogenes had the potential to encode activating receptors. Elsewhere in the LRC, between FCAR and GP6, we identified a novel gene that encodes two Ig-like domains and a long inhibitory intracellular tail. Comparison with two other porcine assemblies revealed a second, nearly identical, non-functional gene encoding a short intracellular tail with ambiguous function. These novel genes were found in a diverse range of mammalian species, including a pseudogene in humans, and typically consist of a single long-tailed receptor and a variable number of short-tailed receptors. Using porcine transcriptome data, both the novel inhibitory gene and the LILR were highly expressed in peripheral blood, while the single KIR gene, KIR2DL1, was either very poorly expressed or not at all. These observations are a prerequisite for improved understanding of immune cell functions in the pig and other species.


September 22, 2019  |  

Molecular epidemiology of isolates with multiple mcr plasmids from a pig farm in Great Britain: the effects of colistin withdrawal in the short and long term.

The environment, including farms, might act as a reservoir for mobile colistin resistance (mcr) genes, which has led to calls for reduction of usage in livestock of colistin, an antibiotic of last resort for humans.To establish the molecular epidemiology of mcr Enterobacteriaceae from faeces of two cohorts of pigs, where one group had initially been treated with colistin and the other not, over a 5?month period following stoppage of colistin usage on a farm in Great Britain; faecal samples were also taken at ~20?months.mcr-1 Enterobacteriaceae were isolated from positive faeces and was WGS performed; conjugation was performed on selected Escherichia coli and colistin MICs were determined.E. coli of diverse ST harbouring mcr-1 and multiple resistance genes were isolated over 5?months from both cohorts. Two STs, from treated cohorts, contained both mcr-1 and mcr-3 plasmids, with some isolates also harbouring multiple copies of mcr-1 on different plasmids. The mcr-1 plasmids grouped into four Inc types (X4, pO111, I2 and HI2), with mcr-3 found in IncP. Multiple copies of mcr plasmids did not have a noticeable effect on colistin MIC, but they could be transferred simultaneously to a Salmonella host in vitro. Neither mcr-1 nor mcr-3 was detected in samples collected ~20?months after colistin cessation.We report for the first known time on the presence in Great Britain of mcr-3 from MDR Enterobacteriaceae, which might concurrently harbour multiple copies of mcr-1 on different plasmids. However, control measures, including stoppage of colistin, can successfully mitigate long-term on-farm persistence.


September 22, 2019  |  

Tracing back multidrug-resistant bacteria in fresh herb production: from chive to source through the irrigation water chain.

Environmental antibiotic-resistant bacteria (ARB) can be transferred to humans through foods. Fresh produce in particular is an ideal vector due to frequent raw consumption. A major contamination source of fresh produce is irrigation water. We hypothesized that water quality significantly affects loads of ARB and their diversity on fresh produce despite various other contamination sources present under agricultural practice conditions. Chive irrigated from an open-top reservoir or sterile-filtered water (control) was examined. Heterotrophic plate counts (HPC) and ARB were determined for water and chive with emphasis on Escherichia coli and Enterococcus spp. High HPC of freshly planted chive decreased over time and were significantly lower on control- vs. reservoir-irrigated chive at harvest (1.3 log (CFU/g) lower). Ciprofloxacin- and ceftazidime-resistant bacteria were significantly lower on control-irrigated chive at harvest and end of shelf life (up to 1.8 log (CFU/g) lower). Escherichia coli and Enterococcus spp. repeatedly isolated from water and chive proved resistant to up to six or four antibiotic classes (80% or 49% multidrug-resistant, respectively). Microbial source tracking identified E. coli-ST1056 along the irrigation chain and on chive. Whole-genome sequencing revealed that E. coli-ST1056 from both environments were clonal and carried the same transmissible multidrug-resistance plasmid, proving water as source of chive contamination. These findings emphasize the urgent need for guidelines concerning ARB in irrigation water and development of affordable water disinfection technologies to diminish ARB on irrigated produce.


September 22, 2019  |  

Comparative genomic and methylome analysis of non-virulent D74 and virulent Nagasaki Haemophilus parasuis isolates.

Haemophilus parasuis is a respiratory pathogen of swine and the etiological agent of Glässer’s disease. H. parasuis isolates can exhibit different virulence capabilities ranging from lethal systemic disease to subclinical carriage. To identify genomic differences between phenotypically distinct strains, we obtained the closed whole-genome sequence annotation and genome-wide methylation patterns for the highly virulent Nagasaki strain and for the non-virulent D74 strain. Evaluation of the virulence-associated genes contained within the genomes of D74 and Nagasaki led to the discovery of a large number of toxin-antitoxin (TA) systems within both genomes. Five predicted hemolysins were identified as unique to Nagasaki and seven putative contact-dependent growth inhibition toxin proteins were identified only in strain D74. Assessment of all potential vtaA genes revealed thirteen present in the Nagasaki genome and three in the D74 genome. Subsequent evaluation of the predicted protein structure revealed that none of the D74 VtaA proteins contain a collagen triple helix repeat domain. Additionally, the predicted protein sequence for two D74 VtaA proteins is substantially longer than any predicted Nagasaki VtaA proteins. Fifteen methylation sequence motifs were identified in D74 and fourteen methylation sequence motifs were identified in Nagasaki using SMRT sequencing analysis. Only one of the methylation sequence motifs was observed in both strains indicative of the diversity between D74 and Nagasaki. Subsequent analysis also revealed diversity in the restriction-modification systems harbored by D74 and Nagasaki. The collective information reported in this study will aid in the development of vaccines and intervention strategies to decrease the prevalence and disease burden caused by H. parasuis.


September 22, 2019  |  

Characterization of Streptococcus pluranimalium from a cattle with mastitis by whole genome sequencing and functional validation.

Streptococcus pluranimalium is a new member of the Streptococcus genus isolated from multiple different animal hosts. It has been identified as a pathogen associated with subclinical mastitis, valvular endocarditis and septicaemia in animals. Moreover, this bacterium has emerged as a new pathogen for human infective endocarditis and brain abscess. However, the patho-biological properties of S. pluranimalium remain virtually unknown. The aim of this study was to determine the complete genome sequence of S. pluranimalium strain TH11417 isolated from a cattle with mastitis, and to characterize its antimicrobial resistance, virulence, and carbon catabolism.The genome of S. pluranimalium TH11417, determined by single-molecule real-time (SMRT) sequencing, consists of 2,065,522 base pair (bp) with a G?+?C content of 38.65%, 2,007 predicted coding sequence (CDS), 58 transfer RNA (tRNA) genes and five ribosome RNA (rRNA) operons. It contains a novel ISSpl1 element (a memeber of the IS3 family) and a ?11417.1 prophage that carries the mef(A), msr(D) and lnu(C) genes. Consistently, our antimicrobial susceptibility test confirmed that S. pluranimalium TH11417 was resistant to erythromycin and lincomycin. However, this strain did not show virulence in murine pneumonia (intranasal inoculation, 107 colony forming unit – CFU) and sepsis (intraperitoneal inoculation, 107 CFU) models. Additionally, this strain is able to grow with glucose, lactose or galactose as the sole carbon source, and possesses a lactose-specific phosphoenolpyruvate-dependent phosphotransferase system (PTS).We reported the first whole genome sequence of S. pluranimalium isolated from a cattle with mastitis. It harbors a prophage carrying the mef(A), msr(D) and lnu(C) genes, and is avirulent in the murine infection model.


September 22, 2019  |  

Streptococcus suis contains multiple phase-variable methyltransferases that show a discrete lineage distribution.

Streptococcus suis is a major pathogen of swine, responsible for a number of chronic and acute infections, and is also emerging as a major zoonotic pathogen, particularly in South-East Asia. Our study of a diverse population of S. suis shows that this organism contains both Type I and Type III phase-variable methyltransferases. In all previous examples, phase-variation of methyltransferases results in genome wide methylation differences, and results in differential regulation of multiple genes, a system known as the phasevarion (phase-variable regulon). We hypothesized that each variant in the Type I and Type III systems encoded a methyltransferase with a unique specificity, and could therefore control a distinct phasevarion, either by recombination-driven shuffling between different specificities (Type I) or by biphasic on-off switching via simple sequence repeats (Type III). Here, we present the identification of the target specificities for each Type III allelic variant from S. suis using single-molecule, real-time methylome analysis. We demonstrate phase-variation is occurring in both Type I and Type III methyltransferases, and show a distinct association between methyltransferase type and presence, and population clades. In addition, we show that the phase-variable Type I methyltransferase was likely acquired at the origin of a highly virulent zoonotic sub-population.


September 22, 2019  |  

Antibiotic-resistant indicator bacteria in irrigation water: High prevalence of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli.

Irrigation water is a major source of fresh produce contamination with undesired microorganisms including antibiotic-resistant bacteria (ARB), and contaminated fresh produce can transfer ARB to the consumer especially when consumed raw. Nevertheless, no legal guidelines exist so far regulating quality of irrigation water with respect to ARB. We therefore examined irrigation water from major vegetable growing areas for occurrence of antibiotic-resistant indicator bacteria Escherichia coli and Enterococcus spp., including extended-spectrum ß-lactamase (ESBL)-producing E. coli and vancomycin-resistant Enterococcus spp. Occurrence of ARB strains was compared to total numbers of the respective species. We categorized water samples according to total numbers and found that categories with higher total E. coli or Enterococcus spp. numbers generally had an increased proportion of respective ARB-positive samples. We further detected high prevalence of ESBL-producing E. coli with eight positive samples of thirty-six (22%), while two presumptive vancomycin-resistant Enterococcus spp. were vancomycin-susceptible in confirmatory tests. In disk diffusion assays all ESBL-producing E. coli were multidrug-resistant (n = 21) and whole-genome sequencing of selected strains revealed a multitude of transmissible resistance genes (ARG), with blaCTX-M-1 (4 of 11) and blaCTX-M-15 (3 of 11) as the most frequent ESBL genes. Overall, the increased occurrence of indicator ARB with increased total indicator bacteria suggests that the latter might be a suitable estimate for presence of respective ARB strains. Finally, the high prevalence of ESBL-producing E. coli with transmissible ARG emphasizes the need to establish legal critical values and monitoring guidelines for ARB in irrigation water.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.