X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Sunday, September 22, 2019

Differential responses of total and active soil microbial communities to long-term experimental N deposition

Abstract The relationship between total and metabolically active soil microbial communities can provide insight into how these communities are impacted by environmental change, which may impact the flow of energy and cycling of nutrients in the future. For example, the anthropogenic release of biologically available N has dramatically increased over the last 150 years, which can alter the processes controlling C storage in terrestrial ecosystems. In a northern hardwood forest ecosystem located in Michigan, USA, nearly 20 years of experimentally increased atmospheric N deposition has reduced forest floor decay and increased soil C storage. A microbial mechanism underlies this response,…

Read More »

Sunday, September 22, 2019

Uncovering full-length transcript isoforms of sugarcane cultivar Khon Kaen 3 using single-molecule long-read sequencing.

Sugarcane is an important global food crop and energy resource. To facilitate the sugarcane improvement program, genome and gene information are important for studying traits at the molecular level. Most currently available transcriptome data for sugarcane were generated using second-generation sequencing platforms, which provide short reads. The de novo assembled transcripts from these data are limited in length, and hence may be incomplete and inaccurate, especially for long RNAs.We generated a transcriptome dataset of leaf tissue from a commercial Thai sugarcane cultivar Khon Kaen 3 (KK3) using PacBio RS II single-molecule long-read sequencing by the Iso-Seq method. Short-read RNA-Seq data…

Read More »

Sunday, September 22, 2019

Genome-wide transcriptome profiling of the medicinal plant Zanthoxylum planispinum using a single-molecule direct RNA sequencing approach.

High-throughput RNA sequencing has revolutionized transcriptome-based studies of candidate genes, key pathways and gene regulation in non-model organisms. We analyzed full-length cDNA sequences in Zanthoxylum planispinum (Z. planispinum), a medicinal herb in major parts of East Asia. The full-length mRNA derived from tissues of leaf, early fruit and maturing fruit stage were sequenced using PacBio RSII platform to identify isoform transcriptome. We obtained 51,402 unigenes, with average 1781?bp per gene in 82.473?Mb gene lengths. Among 51,402, 3963 unigenes showed variety of isoform. By selection of one representative gene among each of the various isoforms, we finalized 46,306 unique gene set…

Read More »

Sunday, September 22, 2019

Single-Molecule Long-Read Sequencing of Zanthoxylum bungeanum Maxim. Transcriptome: Identification of Aroma-Related Genes

Zanthoxylum bungeanum Maxim. is an economically important tree species that is resistant to drought and infertility, and has potential medicinal and edible value. However, comprehensive genomic data are not yet available for this species, limiting its potential utility for medicinal use, breeding programs, and cultivation. Transcriptome sequencing provides an effective approach to remedying this shortcoming. Herein, single-molecule long-read sequencing and next-generation sequencingapproacheswereusedinparalleltoobtaintranscriptisoformstructureandgenefunctional informationinZ.bungeanum. Intotal, 282,101readsofinserts(ROIs)wereidentified, including134,074 full-length non-chimeric reads, among which 65,711 open reading frames (ORFs), 50,135 simple sequence repeats (SSRs), and 1492 long non-coding RNAs (lncRNAs) were detected. Functional annotation revealed metabolic pathways related to aroma components and color…

Read More »

Sunday, September 22, 2019

Isoform sequencing and state-of-art applications for unravelling complexity of plant transcriptomes

Single-molecule real-time (SMRT) sequencing developed by PacBio, also called third-generation sequencing (TGS), offers longer reads than the second-generation sequencing (SGS). Given its ability to obtain full-length transcripts without assembly, isoform sequencing (Iso-Seq) of transcriptomes by PacBio is advantageous for genome annotation, identification of novel genes and isoforms, as well as the discovery of long non-coding RNA (lncRNA). In addition, Iso-Seq gives access to the direct detection of alternative splicing, alternative polyadenylation (APA), gene fusion, and DNA modifications. Such applications of Iso-Seq facilitate the understanding of gene structure, post-transcriptional regulatory networks, and subsequently proteomic diversity. In this review, we summarize its…

Read More »

Sunday, September 22, 2019

Metagenomic SMRT sequencing-based exploration of novel lignocellulose-degrading capability in wood detritus from Torreya nucifera in Bija forest on Jeju Island.

Lignocellulose, mostly composed of cellulose, hemicellulose and lignin generated through secondary growth of woody plant, is considered as promising resources for bio-fuel. In order to use lignocellulose as a biofuel, the biodegradation besides high-cost chemical treatments were applied, but its knowledge on decomposition of lignocellulose occurring in a natural environment were insufficient. We analyzed 16S rRNA gene and metagenome to understand how the lignocellulose are decomposed naturally in decayed Torreya nucifera (L) of Bija forest (Bijarim) in Gotjawal, an ecologically distinct environment. A total of 464,360 reads were obtained from 16S rRNA gene sequencing, representing diverse phyla; Proteobacteria (51%), Bacteroidetes…

Read More »

Sunday, September 22, 2019

Computational analysis of alternative splicing in plant genomes.

Computational analyses play crucial roles in characterizing splicing isoforms in plant genomes. In this review, we provide a survey of computational tools used in recently published, genome-scale splicing analyses in plants. We summarize the commonly used software and pipelines for read mapping, isoform reconstruction, isoform quantification, and differential expression analysis. We also discuss methods for analyzing long reads and the strategies to combine long and short reads in identifying splicing isoforms. We review several tools for characterizing local splicing events, splicing graphs, coding potential, and visualizing splicing isoforms. We further discuss the procedures for identifying conserved splicing isoforms across plant…

Read More »

Sunday, September 22, 2019

Integrative analysis of three RNA sequencing methods identifies mutually exclusive exons of MADS-box isoforms during early bud development in Picea abies.

Recent efforts to sequence the genomes and transcriptomes of several gymnosperm species have revealed an increased complexity in certain gene families in gymnosperms as compared to angiosperms. One example of this is the gymnosperm sister clade to angiosperm TM3-like MADS-box genes, which at least in the conifer lineage has expanded in number of genes. We have previously identified a member of this sub-clade, the conifer gene DEFICIENS AGAMOUS LIKE 19 (DAL19), as being specifically upregulated in cone-setting shoots. Here, we show through Sanger sequencing of mRNA-derived cDNA and mapping to assembled conifer genomic sequences that DAL19 produces six mature mRNA…

Read More »

Sunday, September 22, 2019

A survey of the complex transcriptome from the highly polyploid sugarcane genome using full-length isoform sequencing and de novo assembly from short read sequencing.

Despite the economic importance of sugarcane in sugar and bioenergy production, there is not yet a reference genome available. Most of the sugarcane transcriptomic studies have been based on Saccharum officinarum gene indices (SoGI), expressed sequence tags (ESTs) and de novo assembled transcript contigs from short-reads; hence knowledge of the sugarcane transcriptome is limited in relation to transcript length and number of transcript isoforms.The sugarcane transcriptome was sequenced using PacBio isoform sequencing (Iso-Seq) of a pooled RNA sample derived from leaf, internode and root tissues, of different developmental stages, from 22 varieties, to explore the potential for capturing full-length transcript…

Read More »

Sunday, September 22, 2019

Association of gene expression with biomass content and composition in sugarcane.

About 64% of the total aboveground biomass in sugarcane production is from the culm, of which ~90% is present in fiber and sugars. Understanding the transcriptome in the sugarcane culm, and the transcripts that are associated with the accumulation of the sugar and fiber components would facilitate the modification of biomass composition for enhanced biofuel and biomaterial production. The Sugarcane Iso-Seq Transcriptome (SUGIT) database was used as a reference for RNA-Seq analysis of variation in gene expression between young and mature tissues, and between 10 genotypes with varying fiber content. Global expression analysis suggests that each genotype displayed a unique…

Read More »

Sunday, September 22, 2019

A community-based culture collection for targeting novel plant growth-promoting bacteria from the sugarcane microbiome.

The soil-plant ecosystem harbors an immense microbial diversity that challenges investigative approaches to study traits underlying plant-microbe association. Studies solely based on culture-dependent techniques have overlooked most microbial diversity. Here we describe the concomitant use of culture-dependent and -independent techniques to target plant-beneficial microbial groups from the sugarcane microbiome. The community-based culture collection (CBC) approach was used to access microbes from roots and stalks. The CBC recovered 399 unique bacteria representing 15.9% of the rhizosphere core microbiome and 61.6-65.3% of the endophytic core microbiomes of stalks. By cross-referencing the CBC (culture-dependent) with the sugarcane microbiome profile (culture-independent), we designed a…

Read More »

Sunday, September 22, 2019

Transcriptome comparative analysis of salt stress responsiveness in chrysanthemum (Dendranthema grandiflorum) roots by Illumina- and Single-Molecule Real-Time-based RNA sequencing.

Salt response has long been considered a polygenic-controlled character in plants. Under salt stress conditions, plants respond by activating a great amount of proteins and enzymes. To develop a better understanding of the molecular mechanism and screen salt responsive genes in chrysanthemum under salt stress, we performed the RNA sequencing (RNA-seq) on both salt-processed chrysanthemum seedling roots and the control group, and gathered six cDNA databases eventually. Moreover, to overcome the Illumina HiSeq technology’s limitation on sufficient length of reads and improve the quality and accuracy of the result, we combined Illumina HiSeq with single-molecule real-time sequencing (SMRT-seq) to decode…

Read More »

Sunday, September 22, 2019

Recent developments in using advanced sequencing technologies for the genomic studies of lignin and cellulose degrading microorganisms.

Lignin is a complex polyphenyl aromatic compound which exists in tight associations with cellulose and hemicellulose to form plant primary and secondary cell wall. Lignocellulose is an abundant renewable biomaterial present on the earth. It has gained much attention in the scientific community in recent years because of its potential applications in bio-based industries. Microbial degradation of lignocellulose polymers was well studied in wood decaying fungi. Based on the plant materials they degrade these fungi were classified as white rot, brown rot and soft rot. However, some groups of bacteria belonging to the actinomycetes, a-proteobacteria and ß-proteobacteria were also found…

Read More »

Sunday, September 22, 2019

Enigmatic Diphyllatea eukaryotes: culturing and targeted PacBio RS amplicon sequencing reveals a higher order taxonomic diversity and global distribution.

The class Diphyllatea belongs to a group of enigmatic unicellular eukaryotes that play a key role in reconstructing the morphological innovation and diversification of early eukaryotic evolution. Despite its evolutionary significance, very little is known about the phylogeny and species diversity of Diphyllatea. Only three species have described morphology, being taxonomically divided by flagella number, two or four, and cell size. Currently, one 18S rRNA Diphyllatea sequence is available, with environmental sequencing surveys reporting only a single partial sequence from a Diphyllatea-like organism. Accordingly, geographical distribution of Diphyllatea based on molecular data is limited, despite morphological data suggesting the class…

Read More »

Sunday, September 22, 2019

De novo clustering of long-read transcriptome data using a greedy, quality-value based algorithm

Long-read sequencing of transcripts with PacBio Iso-Seq and Oxford Nanopore Technologies has proven to be central to the study of complex isoform landscapes in many organisms. However, current de novo transcript reconstruction algorithms from long-read data are limited, leaving the potential of these technologies unfulfilled. A common bottleneck is the dearth of scalable and accurate algorithms for clustering long reads according to their gene family of origin. To address this challenge, we develop isONclust, a clustering algorithm that is greedy (in order to scale) and makes use of quality values (in order to handle variable error rates). We test isONclust…

Read More »

1 2 3 4

Subscribe for blog updates:

Archives