Menu
July 7, 2019  |  

Regulation of genetic flux between bacteria by restriction-modification systems.

Restriction-modification (R-M) systems are often regarded as bacteria’s innate immune systems, protecting cells from infection by mobile genetic elements (MGEs). Their diversification has been recently associated with the emergence of particularly virulent lineages. However, we have previously found more R-M systems in genomes carrying more MGEs. Furthermore, it has been suggested that R-M systems might favor genetic transfer by producing recombinogenic double-stranded DNA ends. To test whether R-M systems favor or disfavor genetic exchanges, we analyzed their frequency with respect to the inferred events of homologous recombination and horizontal gene transfer within 79 bacterial species. Genetic exchanges were more frequent in bacteria with larger genomes and in those encoding more R-M systems. We created a recognition target motif predictor for Type II R-M systems that identifies genomes encoding systems with similar restriction sites. We found more genetic exchanges between these genomes, independently of their evolutionary distance. Our results reconcile previous studies by showing that R-M systems are more abundant in promiscuous species, wherein they establish preferential paths of genetic exchange within and between lineages with cognate R-M systems. Because the repertoire and/or specificity of R-M systems in bacterial lineages vary quickly, the preferential fluxes of genetic transfer within species are expected to constantly change, producing time-dependent networks of gene transfer.


July 7, 2019  |  

PEPR: pipelines for evaluating prokaryotic references.

The rapid adoption of microbial whole genome sequencing in public health, clinical testing, and forensic laboratories requires the use of validated measurement processes. Well-characterized, homogeneous, and stable microbial genomic reference materials can be used to evaluate measurement processes, improving confidence in microbial whole genome sequencing results. We have developed a reproducible and transparent bioinformatics tool, PEPR, Pipelines for Evaluating Prokaryotic References, for characterizing the reference genome of prokaryotic genomic materials. PEPR evaluates the quality, purity, and homogeneity of the reference material genome, and purity of the genomic material. The quality of the genome is evaluated using high coverage paired-end sequence data; coverage, paired-end read size and direction, as well as soft-clipping rates, are used to identify mis-assemblies. The homogeneity and purity of the material relative to the reference genome are characterized by comparing base calls from replicate datasets generated using multiple sequencing technologies. Genomic purity of the material is assessed by checking for DNA contaminants. We demonstrate the tool and its output using sequencing data while developing a Staphylococcus aureus candidate genomic reference material. PEPR is open source and available at https://github.com/usnistgov/pepr .


July 7, 2019  |  

Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences.

Single Molecule Real-Time (SMRT) sequencing technology and Oxford Nanopore technologies (ONT) produce reads over 10?kb in length, which have enabled high-quality genome assembly at an affordable cost. However, at present, long reads have an error rate as high as 10-15%. Complex and computationally intensive pipelines are required to assemble such reads.We present a new mapper, minimap and a de novo assembler, miniasm, for efficiently mapping and assembling SMRT and ONT reads without an error correction stage. They can often assemble a sequencing run of bacterial data into a single contig in a few minutes, and assemble 45-fold Caenorhabditis elegans data in 9?min, orders of magnitude faster than the existing pipelines, though the consensus sequence error rate is as high as raw reads. We also introduce a pairwise read mapping format and a graphical fragment assembly format, and demonstrate the interoperability between ours and current tools.https://github.com/lh3/minimap and https://github.com/lh3/miniasmhengli@broadinstitute.orgSupplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.


July 7, 2019  |  

Complete genomes of Bacillus coagulans S-lac and Bacillus subtilis TO-A JPC, two phylogenetically distinct probiotics.

Several spore-forming strains of Bacillus are marketed as probiotics due to their ability to survive harsh gastrointestinal conditions and confer health benefits to the host. We report the complete genomes of two commercially available probiotics, Bacillus coagulans S-lac and Bacillus subtilis TO-A JPC, and compare them with the genomes of other Bacillus and Lactobacillus. The taxonomic position of both organisms was established with a maximum-likelihood tree based on twenty six housekeeping proteins. Analysis of all probiotic strains of Bacillus and Lactobacillus reveal that the essential sporulation proteins are conserved in all Bacillus probiotic strains while they are absent in Lactobacillus spp. We identified various antibiotic resistance, stress-related, and adhesion-related domains in these organisms, which likely provide support in exerting probiotic action by enabling adhesion to host epithelial cells and survival during antibiotic treatment and harsh conditions.


July 7, 2019  |  

Structural and functional analysis of the finished genome of the recently isolated toxic Anabaena sp. WA102.

Very few closed genomes of the cyanobacteria that commonly produce toxic blooms in lakes and reservoirs are available, limiting our understanding of the properties of these organisms. A new anatoxin-a-producing member of the Nostocaceae, Anabaena sp. WA102, was isolated from a freshwater lake in Washington State, USA, in 2013 and maintained in non-axenic culture.The Anabaena sp. WA102 5.7 Mbp genome assembly has been closed with long-read, single-molecule sequencing and separately a draft genome assembly has been produced with short-read sequencing technology. The closed and draft genome assemblies are compared, showing a correlation between long repeats in the genome and the many gaps in the short-read assembly. Anabaena sp. WA102 encodes anatoxin-a biosynthetic genes, as does its close relative Anabaena sp. AL93 (also introduced in this study). These strains are distinguished by differences in the genes for light-harvesting phycobilins, with Anabaena sp. AL93 possessing a phycoerythrocyanin operon. Biologically relevant structural variants in the Anabaena sp. WA102 genome were detected only by long-read sequencing: a tandem triplication of the anaBCD promoter region in the anatoxin-a synthase gene cluster (not triplicated in Anabaena sp. AL93) and a 5-kbp deletion variant present in two-thirds of the population. The genome has a large number of mobile elements (160). Strikingly, there was no synteny with the genome of its nearest fully assembled relative, Anabaena sp. 90.Structural and functional genome analyses indicate that Anabaena sp. WA102 has a flexible genome. Genome closure, which can be readily achieved with long-read sequencing, reveals large scale (e.g., gene order) and local structural features that should be considered in understanding genome evolution and function.


July 7, 2019  |  

Expression and purification of the modification-dependent restriction enzyme BisI and its homologous enzymes.

The methylation-dependent restriction endonuclease (REase) BisI (G(m5)C???NGC) is found in Bacillus subtilis T30. We expressed and purified the BisI endonuclease and 34 BisI homologs identified in bacterial genomes. 23 of these BisI homologs are active based on digestion of (m5)C-modified substrates. Two major specificities were found among these BisI family enzymes: Group I enzymes cut GCNGC containing two to four (m5)C in the two strands, or hemi-methylated sites containing two (m5)C in one strand; Group II enzymes only cut GCNGC sites containing three to four (m5)C, while one enzyme requires all four cytosines to be modified for cleavage. Another homolog, Esp638I cleaves GCS???SGC (relaxed specificity RCN???NGY, containing at least four (m5)C). Two BisI homologs show degenerate specificity cleaving unmodified DNA. Many homologs are small proteins ranging from 150 to 190 amino acid (aa) residues, but some homologs associated with mobile genetic elements are larger and contain an extra C-terminal domain. More than 156 BisI homologs are found in >60 bacterial genera, indicating that these enzymes are widespread in bacteria. They may play an important biological function in restricting pre-modified phage DNA.


July 7, 2019  |  

Chloroplast genomes: diversity, evolution, and applications in genetic engineering.

Chloroplasts play a crucial role in sustaining life on earth. The availability of over 800 sequenced chloroplast genomes from a variety of land plants has enhanced our understanding of chloroplast biology, intracellular gene transfer, conservation, diversity, and the genetic basis by which chloroplast transgenes can be engineered to enhance plant agronomic traits or to produce high-value agricultural or biomedical products. In this review, we discuss the impact of chloroplast genome sequences on understanding the origins of economically important cultivated species and changes that have taken place during domestication. We also discuss the potential biotechnological applications of chloroplast genomes.


July 7, 2019  |  

A commensal bacterium promotes virulence of an opportunistic pathogen via cross-respiration.

Bacteria rarely inhabit infection sites alone, instead residing in diverse, multispecies communities. Despite this fact, bacterial pathogenesis studies primarily focus on monoculture infections, overlooking how community interactions influence the course of disease. In this study, we used global mutant fitness profiling (transposon sequencing [Tn-seq]) to determine the genetic requirements for the pathogenic bacterium Aggregatibacter actinomycetemcomitans to cause disease when coinfecting with the commensal bacterium Streptococcus gordonii Our results show that S. gordonii extensively alters A. actinomycetemcomitans requirements for virulence factors and biosynthetic pathways during infection. In addition, we discovered that the presence of S. gordonii enhances the bioavailability of oxygen during infection, allowing A. actinomycetemcomitans to shift from a primarily fermentative to a respiratory metabolism that enhances its growth yields and persistence. Mechanistically, respiratory metabolism enhances the fitness of A. actinomycetemcomitans in vivo by increasing ATP yields via central metabolism and creating a proton motive force. Our results reveal that, similar to cross-feeding, where one species provides another species with a nutrient, commensal bacteria can also provide electron acceptors that promote the respiratory growth and fitness of pathogens in vivo, an interaction that we term cross-respiration.Commensal bacteria can enhance the virulence of pathogens in mixed-species infections. However, knowledge of the mechanisms underlying this clinically relevant phenomenon is lacking. To bridge this gap, we comprehensively determined the genes a pathogen needs to establish coinfection with a commensal. Our findings show that the metabolism of the pathogen is low-energy-yielding in monoinfection, but in coinfection, the commensal improves the fitness of the pathogen by increasing the bioavailability of oxygen, thereby shifting the pathogen toward a high-energy-yielding metabolism. Similar to cross-feeding, this interaction, which we term cross-respiration, illustrates that commensal bacteria can provide electron acceptors that enhance the virulence of pathogens during infection. Copyright © 2016 Stacy et al.


July 7, 2019  |  

Vibrio anguillarum is genetically and phenotypically unaffected by long-term continuous exposure to the antibacterial compound tropodithietic acid.

Minimizing the use of antibiotics in the food production chain is essential for limiting the development and spread of antibiotic-resistant bacteria. One alternative intervention strategy is the use of probiotic bacteria, and bacteria of the marine Roseobacter clade are capable of antagonizing fish-pathogenic vibrios in fish larvae and live feed cultures for fish larvae. The antibacterial compound tropodithietic acid (TDA), an antiporter that disrupts the proton motive force, is key in the antibacterial activity of several roseobacters. Introducing probiotics on a larger scale requires understanding of any potential side effects of long-term exposure of the pathogen to the probionts or any compounds they produce. Here we exposed the fish pathogen Vibrio anguillarum to TDA for several hundred generations in an adaptive evolution experiment. No tolerance or resistance arose during the 90 days of exposure, and whole-genome sequencing of TDA-exposed lineages and clones revealed few mutational changes, compared to lineages grown without TDA. Amino acid-changing mutations were found in two to six different genes per clone; however, no mutations appeared unique to the TDA-exposed lineages or clones. None of the virulence genes of V. anguillarum was affected, and infectivity assays using fish cell lines indicated that the TDA-exposed lineages and clones were less invasive than the wild-type strain. Thus, long-term TDA exposure does not appear to result in TDA resistance and the physiology of V. anguillarum appears unaffected, supporting the application of TDA-producing roseobacters as probiotics in aquaculture.It is important to limit the use of antibiotics in our food production, to reduce the risk of bacteria developing antibiotic resistance. We showed previously that marine bacteria of the Roseobacter clade can prevent or reduce bacterial diseases in fish larvae, acting as probiotics. Roseobacters produce the antimicrobial compound tropodithietic acid (TDA), and we were concerned regarding whether long-term exposure to this compound could induce resistance or affect the disease-causing ability of the fish pathogen. Therefore, we exposed the fish pathogen Vibrio anguillarum to increasing TDA concentrations over 3 months. We did not see the development of any resistance to TDA, and subsequent infection assays revealed that none of the TDA-exposed clones had increased virulence toward fish cells. Hence, this study supports the use of roseobacters as a non-risk-based disease control measure in aquaculture. Copyright © 2016, American Society for Microbiology. All Rights Reserved.


July 7, 2019  |  

Bacterial genetics: SMRT-seq reveals an epigenetic switch.

Streptococcus pneumoniae uses genetic diversification as a strategy to achieve phenotypic plasticity. For example, DNA inversion of the hsdS genes of type I restriction-modification (R-M) systems determines whether S. pneumoniae forms opaque or transparent colonies, which have different colonization and virulence characteristics. Zhang and colleagues now use single-molecule, real-time sequencing (SMRT-seq) to show the allelic variation of hsdS that results from site-specific recombination forms part of an epigenetic switch.


July 7, 2019  |  

Complete genome sequence of thermophilic Bacillus smithii type strain DSM 4216(T).

Bacillus smithii is a facultatively anaerobic, thermophilic bacterium able to use a variety of sugars that can be derived from lignocellulosic feedstocks. Being genetically accessible, it is a potential new host for biotechnological production of green chemicals from renewable resources. We determined the complete genomic sequence of the B. smithii type strain DSM 4216(T), which consists of a 3,368,778 bp chromosome (GenBank accession number CP012024.1) and a 12,514 bp plasmid (GenBank accession number CP012025.1), together encoding 3880 genes. Genome annotation via RAST was complemented by a protein domain analysis. Some unique features of B. smithii central metabolism in comparison to related organisms included the lack of a standard acetate production pathway with no apparent pyruvate formate lyase, phosphotransacetylase, and acetate kinase genes, while acetate was the second fermentation product.


July 7, 2019  |  

Complete genome of the starch-degrading myxobacteria Sandaracinus amylolyticus DSM 53668T.

Myxobacteria are members of d-proteobacteria and are typified by large genomes, well-coordinated social behavior, gliding motility, and starvation-induced fruiting body formation. Here, we report the 10.33 Mb whole genome of a starch-degrading myxobacterium Sandaracinus amylolyticus DSM 53668(T) that encodes 8,962 proteins, 56 tRNA, and two rRNA operons. Phylogenetic analysis, in silico DNA-DNA hybridization and average nucleotide identity reveal its divergence from other myxobacterial species and support its taxonomic characterization into a separate family Sandaracinaceae, within the suborder Sorangiineae. Sequence similarity searches using the Carbohydrate-active enzymes (CAZyme) database help identify the enzyme repertoire of S. amylolyticus involved in starch, agar, chitin, and cellulose degradation. We identified 16 a-amylases and two ?-amylases in the S. amylolyticus genome that likely play a role in starch degradation. While many of the amylases are seen conserved in other d-proteobacteria, we notice several novel amylases acquired via horizontal transfer from members belonging to phylum Deinococcus-Thermus, Acidobacteria, and Cyanobacteria. No agar degrading enzyme(s) were identified in the S. amylolyticus genome. Interestingly, several putative ß-glucosidases and endoglucanases proteins involved in cellulose degradation were identified. However, the absence of cellobiohydrolases/exoglucanases corroborates with the lack of cellulose degradation by this bacteria. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.


July 7, 2019  |  

Large-scale maps of variable infection efficiencies in aquatic Bacteroidetes phage-host model systems.

Microbes drive ecosystem functioning and their viruses modulate these impacts through mortality, gene transfer and metabolic reprogramming. Despite the importance of virus-host interactions and likely variable infection efficiencies of individual phages across hosts, such variability is seldom quantified. Here, we quantify infection efficiencies of 38 phages against 19 host strains in aquatic Cellulophaga (Bacteroidetes) phage-host model systems. Binary data revealed that some phages infected only one strain while others infected 17, whereas quantitative data revealed that efficiency of infection could vary 10 orders of magnitude, even among phages within one population. This provides a baseline for understanding and modeling intrapopulation host range variation. Genera specific host ranges were also informative. For example, the Cellulophaga Microviridae, showed a markedly broader intra-species host range than previously observed in Escherichia coli systems. Further, one phage genus, Cba41, was examined to investigate nonheritable changes in plating efficiency and burst size that depended on which host strain it most recently infected. While consistent with host modification of phage DNA, no differences in nucleotide sequence or DNA modifications were detected, leaving the observation repeatable, but the mechanism unresolved. Overall, this study highlights the importance of quantitatively considering replication variations in studies of phage-host interactions. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.


July 7, 2019  |  

Emergence of epidemic Neisseria meningitidis serogroup C in Niger, 2015: an analysis of national surveillance data.

To combat Neisseria meningitidis serogroup A epidemics in the meningitis belt of sub-Saharan Africa, a meningococcal serogroup A conjugate vaccine (MACV) has been progressively rolled out since 2010. We report the first meningitis epidemic in Niger since the nationwide introduction of MACV.We compiled and analysed nationwide case-based meningitis surveillance data in Niger. Cases were confirmed by culture or direct real-time PCR, or both, of cerebrospinal fluid specimens, and whole-genome sequencing was used to characterise isolates. Information on vaccination campaigns was collected by the Niger Ministry of Health and WHO.From Jan 1 to June 30, 2015, 9367 suspected meningitis cases and 549 deaths were reported in Niger. Among 4301 cerebrospinal fluid specimens tested, 1603 (37·3%) were positive for a bacterial pathogen, including 1147 (71·5%) that were positive for N meningitidis serogroup C (NmC). Whole-genome sequencing of 77 NmC isolates revealed the strain to be ST-10217. Although vaccination campaigns were limited in scope because of a global vaccine shortage, 1·4 million people were vaccinated from March to June, 2015.This epidemic represents the largest global NmC outbreak so far and shows the continued threat of N meningitidis in sub-Saharan Africa. The risk of further regional expansion of this novel clone highlights the need for continued strengthening of case-based surveillance. The availability of an affordable, multivalent conjugate vaccine may be important in future epidemic response.MenAfriNet consortium, a partnership between the US Centers for Disease Control and Prevention, WHO, and Agence de Médecine Preventive, through a grant from the Bill & Melinda Gates Foundation. Copyright © 2016 World Health Organization. Published by Elsevier Ltd/Inc/BV. All rights reserved. Published by Elsevier Ltd.. All rights reserved.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.