Menu
September 22, 2019  |  

Transcriptional fates of human-specific segmental duplications in brain.

Despite the importance of duplicate genes for evolutionary adaptation, accurate gene annotation is often incomplete, incorrect, or lacking in regions of segmental duplication. We developed an approach combining long-read sequencing and hybridization capture to yield full-length transcript information and confidently distinguish between nearly identical genes/paralogs. We used biotinylated probes to enrich for full-length cDNA from duplicated regions, which were then amplified, size-fractionated, and sequenced using single-molecule, long-read sequencing technology, permitting us to distinguish between highly identical genes by virtue of multiple paralogous sequence variants. We examined 19 gene families as expressed in developing and adult human brain, selected for their high sequence identity (average >99%) and overlap with human-specific segmental duplications (SDs). We characterized the transcriptional differences between related paralogs to better understand the birth-death process of duplicate genes and particularly how the process leads to gene innovation. In 48% of the cases, we find that the expressed duplicates have changed substantially from their ancestral models due to novel sites of transcription initiation, splicing, and polyadenylation, as well as fusion transcripts that connect duplication-derived exons with neighboring genes. We detect unannotated open reading frames in genes currently annotated as pseudogenes, while relegating other duplicates to nonfunctional status. Our method significantly improves gene annotation, specifically defining full-length transcripts, isoforms, and open reading frames for new genes in highly identical SDs. The approach will be more broadly applicable to genes in structurally complex regions of other genomes where the duplication process creates novel genes important for adaptive traits.© 2018 Dougherty et al.; Published by Cold Spring Harbor Laboratory Press.


September 22, 2019  |  

Long-read sequencing and de novo assembly of a Chinese genome.

Short-read sequencing has enabled the de novo assembly of several individual human genomes, but with inherent limitations in characterizing repeat elements. Here we sequence a Chinese individual HX1 by single-molecule real-time (SMRT) long-read sequencing, construct a physical map by NanoChannel arrays and generate a de novo assembly of 2.93?Gb (contig N50: 8.3?Mb, scaffold N50: 22.0?Mb, including 39.3?Mb N-bases), together with 206?Mb of alternative haplotypes. The assembly fully or partially fills 274 (28.4%) N-gaps in the reference genome GRCh38. Comparison to GRCh38 reveals 12.8?Mb of HX1-specific sequences, including 4.1?Mb that are not present in previously reported Asian genomes. Furthermore, long-read sequencing of the transcriptome reveals novel spliced genes that are not annotated in GENCODE and are missed by short-read RNA-Seq. Our results imply that improved characterization of genome functional variation may require the use of a range of genomic technologies on diverse human populations.


September 22, 2019  |  

Assessment of an organ-specific de novo transcriptome of the nematode trap-crop, Solanum sisymbriifolium

Solanum sisymbriifolium, also known as “Litchi Tomato” or “Sticky Nightshade,” is an undomesticated and poorly researched plant related to potato and tomato. Unlike the latter species, S. sisymbriifolium induces eggs of the cyst nematode, Globodera pallida, to hatch and migrate into its roots, but then arrests further nematode maturation. In order to provide researchers with a partial blueprint of its genetic make-up so that the mechanism of this response might be identified, we used single molecule real time (SMRT) sequencing to compile a high quality de novo transcriptome of 41,189 unigenes drawn from individually sequenced bud, root, stem, and leaf RNA populations. Functional annotation and BUSCO analysis showed that this transcriptome was surprisingly complete, even though it represented genes expressed at a single time point. By sequencing the 4 organ libraries separately, we found we could get a reliable snapshot of transcript distributions in each organ. A divergent site analysis of the merged transcriptome indicated that this species might have undergone a recent genome duplication and re-diploidization. Further analysis indicated that the plant then retained a disproportionate number of genes associated with photosynthesis and amino acid metabolism in comparison to genes with characteristics of R-proteins or involved in secondary metabolism. The former processes may have given S. sisymbriifolium a bigger competitive advantage than the latter did. Copyright © 2018 Wixom et al.


September 22, 2019  |  

Genome analysis of Taraxacum kok-saghyz Rodin provides new insights into rubber biosynthesis

The Russian dandelion Taraxacum kok-saghyz Rodin (TKS), a member of the Composite family and a potential alternative source of natural rubber (NR) and inulin, is an ideal model system for studying rubber biosynthesis. Here we present the draft genome of TKS, the first assembled NR-producing weed plant. The draft TKS genome assembly has a length of 1.29 Gb, containing 46,731 predicted protein-coding genes and 68.56% repeats, in which the LTR-RT elements predominantly contribute to the genome enlargement. We analyzed the heterozygous regions/genes, suggesting its possible involvement in inbreeding depression. Through comparative studies between rubber-producing and non-rubber-producing plants, we found that enzymes of the mevalonate (MVA) pathway and rubber elongation might be critical for rubber biosynthesis, and several key isoforms have been isolated showing predominantly expressed in the latex, indicating their crucial functions in rubber biosynthesis. Moreover, for two important families in rubber elongation, the CPT/CPTL and REF/SRPP families, diverse evolutionary tracks have been revealed. These results provide valuable resources and new insights into the mechanism of NR biosynthesis, and facilitate the development of alternative NR producing crops.


September 22, 2019  |  

Genome characterization of oleaginous Aspergillus oryzae BCC7051: A potential fungal-based platform for lipid production.

The selected robust fungus, Aspergillus oryzae strain BCC7051 is of interest for biotechnological production of lipid-derived products due to its capability to accumulate high amount of intracellular lipids using various sugars and agro-industrial substrates. Here, we report the genome sequence of the oleaginous A. oryzae BCC7051. The obtained reads were de novo assembled into 25 scaffolds spanning of 38,550,958 bps with predicted 11,456 protein-coding genes. By synteny mapping, a large rearrangement was found in two scaffolds of A. oryzae BCC7051 as compared to the reference RIB40 strain. The genetic relationship between BCC7051 and other strains of A. oryzae in terms of aflatoxin production was investigated, indicating that the A. oryzae BCC7051 was categorized into group 2 nonaflatoxin-producing strain. Moreover, a comparative analysis of the structural genes focusing on the involvement in lipid metabolism among oleaginous yeast and fungi revealed the presence of multiple isoforms of metabolic enzymes responsible for fatty acid synthesis in BCC7051. The alternative routes of acetyl-CoA generation as oleaginous features and malate/citrate/pyruvate shuttle were also identified in this A. oryzae strain. The genome sequence generated in this work is a dedicated resource for expanding genome-wide study of microbial lipids at systems level, and developing the fungal-based platform for production of diversified lipids with commercial relevance.


September 22, 2019  |  

A survey of localized sequence rearrangements in human DNA.

Genomes mutate and evolve in ways simple (substitution or deletion of bases) and complex (e.g. chromosome shattering). We do not fully understand what types of complex mutation occur, and we cannot routinely characterize arbitrarily-complex mutations in a high-throughput, genome-wide manner. Long-read DNA sequencing methods (e.g. PacBio, nanopore) are promising for this task, because one read may encompass a whole complex mutation. We describe an analysis pipeline to characterize arbitrarily-complex ‘local’ mutations, i.e. intrachromosomal mutations encompassed by one DNA read. We apply it to nanopore and PacBio reads from one human cell line (NA12878), and survey sequence rearrangements, both real and artifactual. Almost all the real rearrangements belong to recurring patterns or motifs: the most common is tandem multiplication (e.g. heptuplication), but there are also complex patterns such as localized shattering, which resembles DNA damage by radiation. Gene conversions are identified, including one between hemoglobin gamma genes. This study demonstrates a way to find intricate rearrangements with any number of duplications, deletions, and repositionings. It demonstrates a probability-based method to resolve ambiguous rearrangements involving highly similar sequences, as occurs in gene conversion. We present a catalog of local rearrangements in one human cell line, and show which rearrangement patterns occur.


September 22, 2019  |  

Vegetative compatibility groups partition variation in the virulence of Verticillium dahliae on strawberry.

Verticillium dahliae infection of strawberry (Fragaria x ananassa) is a major cause of disease-induced wilting in soil-grown strawberries across the world. To understand what components of the pathogen are affecting disease expression, the presence of the known effector VdAve1 was screened in a sample of Verticillium dahliae isolates. Isolates from strawberry were found to contain VdAve1 and were divided into two major clades, based upon their vegetative compatibility groups (VCG); no UK strawberry isolates contained VdAve1. VC clade was strongly related to their virulence levels. VdAve1-containing isolates pathogenic on strawberry were found in both clades, in contrast to some recently published findings. On strawberry, VdAve1-containing isolates had significantly higher virulence during early infection, which diminished in significance as the infection progressed. Transformation of a virulent non-VdAve1 containing isolate, with VdAve1 was found neither to increase nor decrease virulence when inoculated on a susceptible strawberry cultivar. There are therefore virulence factors that are epistatic to VdAve1 and potentially multiple independent routes to high virulence on strawberry in V. dahliae lineages. Genome sequencing a subset of isolates across the two VCGs revealed that isolates were differentiated at the whole genome level and contained multiple changes in putative effector content, indicating that different clonal VCGs may have evolved different strategies for infecting strawberry, leading to different virulence levels in pathogenicity tests. It is therefore important to consider both clonal lineage and effector complement as the adaptive potential of each lineage will differ, even if they contain the same race determining effector.


September 22, 2019  |  

Reproducible integration of multiple sequencing datasets to form high-confidence SNP, indel, and reference calls for five human genome reference materials

Benchmark small variant calls from the Genome in a Bottle Consortium (GIAB) for the CEPH/HapMap genome NA12878 (HG001) have been used extensively for developing, optimizing, and demonstrating performance of sequencing and bioinformatics methods. Here, we develop a reproducible, cloud-based pipeline to integrate multiple sequencing datasets and form benchmark calls, enabling application to arbitrary human genomes. We use these reproducible methods to form high-confidence calls with respect to GRCh37 and GRCh38 for HG001 and 4 additional broadly-consented genomes from the Personal Genome Project that are available as NIST Reference Materials. These new genomes’ broad, open consent with few restrictions on availability of samples and data is enabling a uniquely diverse array of applications. Our new methods produce 17% more high-confidence SNPs, 176% more indels, and 12% larger regions than our previously published calls. To demonstrate that these calls can be used for accurate benchmarking, we compare other high-quality callsets to ours (e.g., Illumina Platinum Genomes), and we demonstrate that the majority of discordant calls are errors in the other callsets, We also highlight challenges in interpreting performance metrics when benchmarking against imperfect high-confidence calls. We show that benchmarking tools from the Global Alliance for Genomics and Health can be used with our calls to stratify performance metrics by variant type and genome context and elucidate strengths and weaknesses of a method.


September 22, 2019  |  

Targeted sequencing by gene synteny, a new strategy for polyploid species: sequencing and physical structure of a complex sugarcane region.

Sugarcane exhibits a complex genome mainly due to its aneuploid nature and high ploidy level, and sequencing of its genome poses a great challenge. Closely related species with well-assembled and annotated genomes can be used to help assemble complex genomes. Here, a stable quantitative trait locus (QTL) related to sugar accumulation in sorghum was successfully transferred to the sugarcane genome. Gene sequences related to this QTL were identified in silico from sugarcane transcriptome data, and molecular markers based on these sequences were developed to select bacterial artificial chromosome (BAC) clones from the sugarcane variety SP80-3280. Sixty-eight BAC clones containing at least two gene sequences associated with the sorghum QTL were sequenced using Pacific Biosciences (PacBio) technology. Twenty BAC sequences were found to be related to the syntenic region, of which nine were sufficient to represent this region. The strategy we propose is called “targeted sequencing by gene synteny,” which is a simpler approach to understanding the genome structure of complex genomic regions associated with traits of interest.


September 22, 2019  |  

Comparative genomics of the wheat fungal pathogen Pyrenophora tritici-repentis reveals chromosomal variations and genome plasticity.

Pyrenophora tritici-repentis (Ptr) is a necrotrophic fungal pathogen that causes the major wheat disease, tan spot. We set out to provide essential genomics-based resources in order to better understand the pathogenicity mechanisms of this important pathogen.Here, we present eight new Ptr isolate genomes, assembled and annotated; representing races 1, 2 and 5, and a new race. We report a high quality Ptr reference genome, sequenced by PacBio technology with Illumina paired-end data support and optical mapping. An estimated 98% of the genome coverage was mapped to 10 chromosomal groups, using a two-enzyme hybrid approach. The final reference genome was 40.9 Mb and contained a total of 13,797 annotated genes, supported by transcriptomic and proteogenomics data sets.Whole genome comparative analysis revealed major chromosomal segmental rearrangements and fusions, highlighting intraspecific genome plasticity in this species. Furthermore, the Ptr race classification was not supported at the whole genome level, as phylogenetic analysis did not cluster the ToxA producing isolates. This expansion of available Ptr genomics resources will directly facilitate research aimed at controlling tan spot disease.


September 22, 2019  |  

Genome evolution across 1,011 Saccharomyces cerevisiae isolates.

Large-scale population genomic surveys are essential to explore the phenotypic diversity of natural populations. Here we report the whole-genome sequencing and phenotyping of 1,011 Saccharomyces cerevisiae isolates, which together provide an accurate evolutionary picture of the genomic variants that shape the species-wide phenotypic landscape of this yeast. Genomic analyses support a single ‘out-of-China’ origin for this species, followed by several independent domestication events. Although domesticated isolates exhibit high variation in ploidy, aneuploidy and genome content, genome evolution in wild isolates is mainly driven by the accumulation of single nucleotide polymorphisms. A common feature is the extensive loss of heterozygosity, which represents an essential source of inter-individual variation in this mainly asexual species. Most of the single nucleotide polymorphisms, including experimentally identified functional polymorphisms, are present at very low frequencies. The largest numbers of variants identified by genome-wide association are copy-number changes, which have a greater phenotypic effect than do single nucleotide polymorphisms. This resource will guide future population genomics and genotype-phenotype studies in this classic model system.


September 22, 2019  |  

Nucleotide-binding resistance gene signatures in sugar beet, insights from a new reference genome.

Nucleotide-binding (NB-ARC), leucine-rich-repeat genes (NLRs) account for 60.8% of resistance (R) genes molecularly characterized from plants. NLRs exist as large gene families prone to tandem duplication and transposition, with high sequence diversity among crops and their wild relatives. This diversity can be a source of new disease resistance, but difficulty in distinguishing specific sequences from homologous gene family members hinders characterization of resistance for improving crop varieties. Current genome sequencing and assembly technologies, especially those using long-read sequencing, are improving resolution of repeat-rich genomic regions and clarifying locations of duplicated genes, such as NLRs. Using the conserved NB-ARC domain as a model, 231 tentative NB-ARC loci were identified in a highly contiguous genome assembly of sugar beet, revealing diverged and truncated NB-ARC signatures as well as full-length sequences. The NB-ARC-associated proteins contained NLR resistance gene domains, including TIR, CC, and LRR, as well as other integrated domains. Phylogenetic relationships of partial and complete domains were determined, and patterns of physical clustering in the genome were evaluated. Comparison of sugar beet NB-ARC domains to validated R genes from monocots and eudicots suggested extensive B. vulgaris-specific subfamily expansions. The NLR landscape in the rhizomania resistance conferring Rz region of Chromosome 3 was characterized, identifying 26 NLR-like sequences spanning 20 MB. This work presents the first detailed view of NLR family composition in a member of the Caryophyllales, builds a foundation for additional disease resistance work in B. vulgaris, and demonstrates an additional nucleic-acid-based method for NLR prediction in non-model plant species. This article is protected by copyright. All rights reserved.This article is protected by copyright. All rights reserved.


September 22, 2019  |  

The Chara genome: Secondary complexity and implications for plant terrestrialization.

Land plants evolved from charophytic algae, among which Charophyceae possess the most complex body plans. We present the genome of Chara braunii; comparison of the genome to those of land plants identified evolutionary novelties for plant terrestrialization and land plant heritage genes. C. braunii employs unique xylan synthases for cell wall biosynthesis, a phragmoplast (cell separation) mechanism similar to that of land plants, and many phytohormones. C. braunii plastids are controlled via land-plant-like retrograde signaling, and transcriptional regulation is more elaborate than in other algae. The morphological complexity of this organism may result from expanded gene families, with three cases of particular note: genes effecting tolerance to reactive oxygen species (ROS), LysM receptor-like kinases, and transcription factors (TFs). Transcriptomic analysis of sexual reproductive structures reveals intricate control by TFs, activity of the ROS gene network, and the ancestral use of plant-like storage and stress protection proteins in the zygote. Copyright © 2018 Elsevier Inc. All rights reserved.


September 22, 2019  |  

Using XCAVATOR and EXCAVATOR2 to Identify CNVs from WGS, WES, and TS Data.

Copy Number Variants (CNVs) are structural rearrangements contributing to phenotypic variation but also associated with many disease states. In recent years, the identification of CNVs from high-throughput sequencing experiments has become a common practice for both research and clinical purposes. Several computational methods have been developed so far. In this unit, we describe and give instructions on how to run two read count-based tools, XCAVATOR and EXCAVATOR2, which are tailored for the detection of both germline and somatic CNVs from different sequencing experiments (whole-genome, whole-exome, and targeted) in various disease contexts and population genetic studies. © 2018 by John Wiley & Sons, Inc.© 2018 John Wiley & Sons, Inc.


September 22, 2019  |  

Human copy number variants are enriched in regions of low mappability.

Copy number variants (CNVs) are known to affect a large portion of the human genome and have been implicated in many diseases. Although whole-genome sequencing (WGS) can help identify CNVs, most analytical methods suffer from limited sensitivity and specificity, especially in regions of low mappability. To address this, we use PopSV, a CNV caller that relies on multiple samples to control for technical variation. We demonstrate that our calls are stable across different types of repeat-rich regions and validate the accuracy of our predictions using orthogonal approaches. Applying PopSV to 640 human genomes, we find that low-mappability regions are approximately 5 times more likely to harbor germline CNVs, in stark contrast to the nearly uniform distribution observed for somatic CNVs in 95 cancer genomes. In addition to known enrichments in segmental duplication and near centromeres and telomeres, we also report that CNVs are enriched in specific types of satellite and in some of the most recent families of transposable elements. Finally, using this comprehensive approach, we identify 3455 regions with recurrent CNVs that were missing from existing catalogs. In particular, we identify 347 genes with a novel exonic CNV in low-mappability regions, including 29 genes previously associated with disease.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.