fbpx
X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Sunday, September 22, 2019

Whole genome sequencing, de novo assembly and phenotypic profiling for the new budding yeast species Saccharomyces jurei.

Saccharomyces sensu stricto complex consist of yeast species, which are not only important in the fermentation industry but are also model systems for genomic and ecological analysis. Here, we present the complete genome assemblies of Saccharomyces jurei, a newly discovered Saccharomyces sensu stricto species from high altitude oaks. Phylogenetic and phenotypic analysis revealed that S. jurei is more closely related to S. mikatae, than S. cerevisiae, and S. paradoxus The karyotype of S. jurei presents two reciprocal chromosomal translocations between chromosome VI/VII and I/XIII when compared to the S. cerevisiae genome. Interestingly, while the rearrangement I/XIII is unique to S.…

Read More »

Sunday, September 22, 2019

B chromosomes of the Asian seabass (Lates calcarifer) contribute to genome variations at the level of individuals and populations.

The Asian seabass (Lates calcarifer) is a bony fish from the Latidae family, which is widely distributed in the tropical Indo-West Pacific region. The karyotype of the Asian seabass contains 24 pairs of A chromosomes and a variable number of AT- and GC-rich B chromosomes (Bchrs or Bs). Dot-like shaped and nucleolus-associated AT-rich Bs were microdissected and sequenced earlier. Here we analyzed DNA fragments from Bs to determine their repeat and gene contents using the Asian seabass genome as a reference. Fragments of 75 genes, including an 18S rRNA gene, were found in the Bs; repeats represented 2% of the…

Read More »

Sunday, September 22, 2019

Characterisation of pathogen-specific regions and novel effector candidates in Fusarium oxysporum f. sp. cepae.

A reference-quality assembly of Fusarium oxysporum f. sp. cepae (Foc), the causative agent of onion basal rot has been generated along with genomes of additional pathogenic and non-pathogenic isolates of onion. Phylogenetic analysis confirmed a single origin of the Foc pathogenic lineage. Genome alignments with other F. oxysporum ff. spp. and non pathogens revealed high levels of syntenic conservation of core chromosomes but little synteny between lineage specific (LS) chromosomes. Four LS contigs in Foc totaling 3.9?Mb were designated as pathogen-specific (PS). A two-fold increase in segmental duplication events was observed between LS regions of the genome compared to within…

Read More »

Sunday, September 22, 2019

Extraordinary genome instability and widespread chromosome rearrangements during vegetative growth

The haploid genome of the pathogenic fungus Zymoseptoria tritici is contained on “core” and “accessory” chromosomes. While 13 core chromosomes are found in all strains, as many as eight accessory chromosomes show presence/absence variation and rearrangements among field isolates. The factors influencing these presence/absence polymorphisms are so far unknown. We investigated chromosome stability using experimental evolution, karyotyping, and genome sequencing. We report extremely high and variable rates of accessory chromosome loss during mitotic propagation in vitro and in planta Spontaneous chromosome loss was observed in 2 to >50% of cells during 4 weeks of incubation. Similar rates of chromosome loss…

Read More »

Sunday, September 22, 2019

The opium poppy genome and morphinan production.

Morphinan-based painkillers are derived from opium poppy (Papaver somniferum L.). We report a draft of the opium poppy genome, with 2.72 gigabases assembled into 11 chromosomes with contig N50 and scaffold N50 of 1.77 and 204 megabases, respectively. Synteny analysis suggests a whole-genome duplication at ~7.8 million years ago and ancient segmental or whole-genome duplication(s) that occurred before the Papaveraceae-Ranunculaceae divergence 110 million years ago. Syntenic blocks representative of phthalideisoquinoline and morphinan components of a benzylisoquinoline alkaloid cluster of 15 genes provide insight into how this cluster evolved. Paralog analysis identified P450 and oxidoreductase genes that combined to form the…

Read More »

Sunday, September 22, 2019

The genomic architecture and molecular evolution of ant odorant receptors.

The massive expansions of odorant receptor (OR) genes in ant genomes are notable examples of rapid genome evolution and adaptive gene duplication. However, the molecular mechanisms leading to gene family expansion remain poorly understood, partly because available ant genomes are fragmentary. Here, we present a highly contiguous, chromosome-level assembly of the clonal raider ant genome, revealing the largest known OR repertoire in an insect. While most ant ORs originate via local tandem duplication, we also observe several cases of dispersed duplication followed by tandem duplication in the most rapidly evolving OR clades. We found that areas of unusually high transposable…

Read More »

Sunday, September 22, 2019

N6-methyladenine DNA methylation in Japonica and Indica rice genomes and its association with gene expression, plant development, and stress responses.

N6-Methyladenine (6mA) DNA methylation has recently been implicated as a potential new epigenetic marker in eukaryotes, including the dicot model Arabidopsis thaliana. However, the conservation and divergence of 6mA distribution patterns and functions in plants remain elusive. Here we report high-quality 6mA methylomes at single-nucleotide resolution in rice based on substantially improved genome sequences of two rice cultivars, Nipponbare (Nip; Japonica) and 93-11 (Indica). Analysis of 6mA genomic distribution and its association with transcription suggest that 6mA distribution and function is rather conserved between rice and Arabidopsis. We found that 6mA levels are positively correlated with the expression of key…

Read More »

Saturday, September 21, 2019

Discovery and genotyping of structural variation from long-read haploid genome sequence data.

In an effort to more fully understand the full spectrum of human genetic variation, we generated deep single-molecule, real-time (SMRT) sequencing data from two haploid human genomes. By using an assembly-based approach (SMRT-SV), we systematically assessed each genome independently for structural variants (SVs) and indels resolving the sequence structure of 461,553 genetic variants from 2 bp to 28 kbp in length. We find that >89% of these variants have been missed as part of analysis of the 1000 Genomes Project even after adjusting for more common variants (MAF > 1%). We estimate that this theoretical human diploid differs by as…

Read More »

Saturday, September 21, 2019

Long-read genome sequencing identifies causal structural variation in a Mendelian disease.

PurposeCurrent clinical genomics assays primarily utilize short-read sequencing (SRS), but SRS has limited ability to evaluate repetitive regions and structural variants. Long-read sequencing (LRS) has complementary strengths, and we aimed to determine whether LRS could offer a means to identify overlooked genetic variation in patients undiagnosed by SRS.MethodsWe performed low-coverage genome LRS to identify structural variants in a patient who presented with multiple neoplasia and cardiac myxomata, in whom the results of targeted clinical testing and genome SRS were negative.ResultsThis LRS approach yielded 6,971 deletions and 6,821 insertions?>?50?bp. Filtering for variants that are absent in an unrelated control and overlap…

Read More »

1 2 3 4

Subscribe for blog updates:

Archives