Menu
July 7, 2019

An amoebal grazer of cyanobacteria requires cobalamin produced by heterotrophic bacteria.

Amoebae are unicellular eukaryotes that consume microbial prey through phagocytosis, playing a role in shaping microbial foodwebs. Many amoebal species can be cultivated axenically in rich media or monoxenically with single bacterial prey species. Here we characterize heterolobosean amoeba LPG3, a recent natural isolate, which is unable to grow on unicellular cyanobacteria, its primary food source, in the absence of a heterotrophic bacterium, a Pseudomonas species coisolate. To investigate the molecular basis of this requirement for heterotrophic bacteria, we performed a screen using a defined non-redundant transposon library of Vibrio cholerae which implicated genes in corrinoid uptake and biosynthesis. Furthermore, cobalamin synthase deletion mutants in V. cholerae and the Pseudomonas species coisolate do not support growth of amoeba LPG3 on cyanobacteria. While cyanobacteria are robust producers of a corrinoid variant called pseudocobalamin, this variant does not support growth of amoeba LPG3. Instead, we show that it requires cobalamin which is produced by the Pseudomonas species coisolate. The diversity of eukaryotes utilizing corrinoids is poorly understood, and this amoebal corrinoid auxotroph serves as a model for examining predator-prey interactions and micronutrient transfer in bacterivores underpinning microbial foodwebs.Importance. Cyanobacteria are important primary producers in aquatic environments where they are grazed upon by a variety of phagotrophic protists, and hence have an impact on nutrient flux at the base of microbial foodwebs. Here we characterize amoebal isolate LPG3 which consumes cyanobacteria as its primary food source but that also requires heterotrophic bacteria as a source of corrinoid vitamins. Amoeba LPG3 specifically requires the corrinoid variant produced by the heterotrophic bacteria, and cannot grow on cyanobacteria alone, as they produce a different corrinoid variant. This same corrinoid specificity is also exhibited by other eukaryotes, including humans and algae. This amoebal model system allows us to dissect predator-prey interactions to uncover factors which may shape microbial foodwebs while also providing insight into corrinoid specificity in eukaryotes. Copyright © 2017 American Society for Microbiology.


July 7, 2019

Prevalence and molecular characterization of mcr-1-positive Salmonella strains recovered from clinical specimens in China.

The recently discovered colistin resistance element, mcr-1, adds to the list of antimicrobial resistance genes that rapidly erode the antimicrobial efficacy of not only the commonly used antibiotics but also the last-line agents of carbapenems and colistin. This study investigated the prevalence of the mobile colistin resistance determinant mcr-1 in Salmonella strains recovered from clinical settings in China and the transmission potential of mcr-1-bearing mobile elements harbored by such isolates. The mcr-1 gene was recoverable in 1.4% of clinical isolates tested, with the majority of them belonging to Salmonella enterica serotype Typhimurium. These isolates exhibited diverse pulsed-field gel electrophoresis (PFGE) profiles and high resistance to antibiotics other than colistin and particularly to cephalosporins. Plasmid analysis showed that mcr-1 was carried on a variety of plasmids with sizes ranging from ~30 to ~250 kb, among which there were conjugative plasmids of ~30 kb, ~60 kb, and ~250 kb and nonconjugative plasmids of ~140 kb, ~180 kb, and ~240 kb. Sequencing of representative mcr-1-carrying plasmids revealed that all conjugative plasmids belonged to the IncX4, IncI2, and IncHI2 types and were highly similar to the corresponding types of plasmids reported previously. Nonconjugative plasmids all belonged to the IncHI2 type, and the nontransferability of these plasmids was attributed to the loss of a region carrying partial or complete tra genes. Our data revealed that, similar to the situation in Escherichia coli, mcr-1 transmission in Salmonella was accelerated by various plasmids, suggesting that transmission of mcr-1-carrying plasmids between different species of Enterobacteriaceae may be a common event. Copyright © 2017 American Society for Microbiology.


July 7, 2019

A phage-like IncY plasmid carrying the mcr-1 gene in Escherichia coli from a pig farm in China.

We report here a new type of plasmid that carries the mcr-1 gene, the pMCR-1-P3 plasmid, harbored in an Escherichia coli strain isolated from a pig farm in China. pMCR-1-P3 belongs to the IncY incompatibility group and is a phage-like plasmid that contains a large portion of phage-related sequences. The backbone of this plasmid is different from that of other mcr-1-carrying plasmids reported previously. Copyright © 2017 American Society for Microbiology.


July 7, 2019

Identification of IncA/C plasmid replication and maintenance genes and development of a plasmid multilocus sequence typing scheme.

Plasmids of incompatibility group A/C (IncA/C) are becoming increasingly prevalent within pathogenic Enterobacteriaceae They are associated with the dissemination of multiple clinically relevant resistance genes, including blaCMY and blaNDM Current typing methods for IncA/C plasmids offer limited resolution. In this study, we present the complete sequence of a blaNDM-1-positive IncA/C plasmid, pMS6198A, isolated from a multidrug-resistant uropathogenic Escherichia coli strain. Hypersaturated transposon mutagenesis, coupled with transposon-directed insertion site sequencing (TraDIS), was employed to identify conserved genetic elements required for replication and maintenance of pMS6198A. Our analysis of TraDIS data identified roles for the replicon, including repA, a toxin-antitoxin system; two putative partitioning genes, parAB; and a putative gene, 053 Construction of mini-IncA/C plasmids and examination of their stability within E. coli confirmed that the region encompassing 053 contributes to the stable maintenance of IncA/C plasmids. Subsequently, the four major maintenance genes (repA, parAB, and 053) were used to construct a new plasmid multilocus sequence typing (PMLST) scheme for IncA/C plasmids. Application of this scheme to a database of 82 IncA/C plasmids identified 11 unique sequence types (STs), with two dominant STs. The majority of blaNDM-positive plasmids examined (15/17; 88%) fall into ST1, suggesting acquisition and subsequent expansion of this blaNDM-containing plasmid lineage. The IncA/C PMLST scheme represents a standardized tool to identify, track, and analyze the dissemination of important IncA/C plasmid lineages, particularly in the context of epidemiological studies. Copyright © 2017 American Society for Microbiology.


July 7, 2019

Genome sequence of the thermotolerant foodborne pathogen Salmonella enterica serovar Senftenberg ATCC 43845 and phylogenetic analysis of loci encoding increased protein quality control mechanisms.

Salmonella enterica subsp. enterica bacteria are important foodborne pathogens with major economic impact. Some isolates exhibit increased heat tolerance, a concern for food safety. Analysis of a finished-quality genome sequence of an isolate commonly used in heat resistance studies, S. enterica subsp. enterica serovar Senftenberg 775W (ATCC 43845), demonstrated an interesting observation that this strain contains not just one, but two horizontally acquired thermotolerance locus homologs. These two loci reside on a large 341.3-kbp plasmid that is similar to the well-studied IncHI2 R478 plasmid but lacks any antibiotic resistance genes found on R478 or other IncHI2 plasmids. As this historical Salmonella isolate has been in use since 1941, comparative analysis of the plasmid and of the thermotolerance loci contained on the plasmid will provide insight into the evolution of heat resistance loci as well as acquisition of resistance determinants in IncHI2 plasmids. IMPORTANCE Thermal interventions are commonly used in the food industry as a means of mitigating pathogen contamination in food products. Concern over heat-resistant food contaminants has recently increased, with the identification of a conserved locus shown to confer heat resistance in disparate lineages of Gram-negative bacteria. Complete sequence analysis of a historical isolate of Salmonella enterica serovar Senftenberg, used in numerous studies because of its novel heat resistance, revealed that this important strain possesses two distinct copies of this conserved thermotolerance locus, residing on a multireplicon IncHI2/IncHI2A plasmid. Phylogenetic analysis of these loci in comparison with homologs identified in various bacterial genera provides an opportunity to examine the evolution and distribution of loci conferring resistance to environmental stressors, such as heat and desiccation.


July 7, 2019

A spontaneous mutation in kdsD, a biosynthesis gene for 3 Deoxy-D-manno-Octulosonic Acid, occurred in a ciprofloxacin resistant strain of Francisella tularensis and caused a high level of attenuation in murine models of tularemia.

Francisella tularensis, a gram-negative facultative intracellular bacterial pathogen, is the causative agent of tularemia and able to infect many mammalian species, including humans. Because of its ability to cause a lethal infection, low infectious dose, and aerosolizable nature, F. tularensis subspecies tularensis is considered a potential biowarfare agent. Due to its in vitro efficacy, ciprofloxacin is one of the antibiotics recommended for post-exposure prophylaxis of tularemia. In order to identify therapeutics that will be efficacious against infections caused by drug resistant select-agents and to better understand the threat, we sought to characterize an existing ciprofloxacin resistant (CipR) mutant in the Schu S4 strain of F. tularensis by determining its phenotypic characteristics and sequencing the chromosome to identify additional genetic alterations that may have occurred during the selection process. In addition to the previously described genetic alterations, the sequence of the CipR mutant strain revealed several additional mutations. Of particular interest was a frameshift mutation within kdsD which encodes for an enzyme necessary for the production of 3-Deoxy-D-manno-Octulosonic Acid (KDO), an integral component of the lipopolysaccharide (LPS). A kdsD mutant was constructed in the Schu S4 strain. Although it was not resistant to ciprofloxacin, the kdsD mutant shared many phenotypic characteristics with the CipR mutant, including growth defects under different conditions, sensitivity to hydrophobic agents, altered LPS profiles, and attenuation in multiple models of murine tularemia. This study demonstrates that the KdsD enzyme is essential for Francisella virulence and may be an attractive therapeutic target for developing novel medical countermeasures.


July 7, 2019

Elucidation of quantitative structural diversity of remarkable rearrangement regions, shufflons, in IncI2 plasmids.

A multiple DNA inversion system, the shufflon, exists in incompatibility (Inc) I1 and I2 plasmids. The shufflon generates variants of the PilV protein, a minor component of the thin pilus. The shufflon is one of the most difficult regions for de novo genome assembly because of its structural diversity even in an isolated bacterial clone. We determined complete genome sequences, including those of IncI2 plasmids carrying mcr-1, of three Escherichia coli strains using single-molecule, real-time (SMRT) sequencing and Illumina sequencing. The sequences assembled using only SMRT sequencing contained misassembled regions in the shufflon. A hybrid analysis using SMRT and Illumina sequencing resolved the misassembled region and revealed that the three IncI2 plasmids, excluding the shufflon region, were highly conserved. Moreover, the abundance ratio of whole-shufflon structures could be determined by quantitative structural variation analysis of the SMRT data, suggesting that a remarkable heterogeneity of whole-shufflon structural variations exists in IncI2 plasmids. These findings indicate that remarkable rearrangement regions should be validated using both long-read and short-read sequencing data and that the structural variation of PilV in the shufflon might be closely related to phenotypic heterogeneity of plasmid-mediated transconjugation involved in horizontal gene transfer even in bacterial clonal populations.


July 7, 2019

Evolutionary dynamics and genomic features of the Elizabethkingia anophelis 2015 to 2016 Wisconsin outbreak strain.

An atypically large outbreak of Elizabethkingia anophelis infections occurred in Wisconsin. Here we show that it was caused by a single strain with thirteen characteristic genomic regions. Strikingly, the outbreak isolates show an accelerated evolutionary rate and an atypical mutational spectrum. Six phylogenetic sub-clusters with distinctive temporal and geographic dynamics are revealed, and their last common ancestor existed approximately one year before the first recognized human infection. Unlike other E. anophelis, the outbreak strain had a disrupted DNA repair mutY gene caused by insertion of an integrative and conjugative element. This genomic change probably contributed to the high evolutionary rate of the outbreak strain and may have increased its adaptability, as many mutations in protein-coding genes occurred during the outbreak. This unique discovery of an outbreak caused by a naturally occurring mutator bacterial pathogen provides a dramatic example of the potential impact of pathogen evolutionary dynamics on infectious disease epidemiology.


July 7, 2019

Prevalence of colistin resistance gene (mcr-1) containing Enterobacteriaceae in feces of patients attending a tertiary care hospital and detection of a mcr-1 containing, colistin susceptible E. coli.

The emergence of the plasmid-mediated mcr colistin resistance gene in the community poses a potential threat for treatment of patients, especially when hospitalized. The aim of this study was to determine the prevalence of all currently known mcr mediated colistin resistance gene in fecal samples of patients attending a tertiary care hospital. From November 2014 until July 2015, fecal samples of patients attending the Leiden University Medical Center were collected and screened for presence of mcr using real-time PCR. Two of 576 patients were positive for mcr-1, resulting in a prevalence of 0.35%, whereas no mcr-2 was found. One of these samples was culture negative, the second sample contained a blaCMY-2 and mcr-1 containing E.coli. This strain belonged to Sequence Type 359 and serotype O177:H21. The mcr-1 containing E.coli was phenotypically susceptible to colistin with a MIC of = 0.25mg/l, due to a 1329bp transposon IS10R inserted into the mcr-1 gene as identified by WGS. This prevalence study shows that mcr-1 is present in low levels patients out of the community attending a hospital. Furthermore the study underlines the importance of phenotypical confirmation of molecular detection of a mcr-1 gene.


July 7, 2019

Zinc resistance within swine associated methicillin resistant staphylococcus aureus (MRSA) Isolates in the USA is associated with MLST lineage.

Zinc resistance in livestock-associated methicillin resistant Staphylococcus aureus (LA-MRSA) sequence type (ST) 398 is primarily mediated by the czrC gene co-located with the mecA gene, encoding methicillin resistance, within the type V SCCmec element. Because czrC and mecA are located within the same mobile genetic element, it has been suggested that the use of in feed zinc as an antidiarrheal agent has the potential to contribute to the emergence and spread of MRSA in swine through increased selection pressure to maintain the SCCmec element in isolates obtained from pigs. In this study we report the prevalence of the czrC gene and phenotypic zinc resistance in US swine associated LA-MRSA ST5 isolates, MRSA ST5 isolates from humans with no swine contact, and US swine associated LA-MRSA ST398 isolates. We demonstrate that the prevalence of zinc resistance in US swine associated LA-MRSA ST5 isolates was significantly lower than the prevalence of zinc resistance in MRSA ST5 isolates from humans with no swine contact, swine associated LA-MRSA ST398 isolates, and previous reports describing zinc resistance in other LA-MRSA ST398 isolates. Collectively our data suggest that selection pressure associated with zinc supplementation in feed is unlikely to have played a significant role in the emergence of LA-MRSA ST5 in the US swine population. Additionally, our data indicate that zinc resistance is associated with MLST lineage suggesting a potential link between genetic lineage and carriage of resistance determinants.Importance Our data suggest that coselection thought to be associated with the use of zinc in feed as an antimicrobial agent is not playing a role in the emergence of livestock-associated methicillin resistant Staphylococcus aureus (LA-MRSA) ST5 in the US swine population. Additionally, our data indicate that zinc resistance is more associated with multi locus sequence type (MLST) lineage suggesting a potential link between genetic lineage and carriage of resistance markers. This information is important to public health professionals, veterinarians, producers, and consumers. Copyright © 2017 American Society for Microbiology.


July 7, 2019

IncFII conjugative plasmid-mediated transmission of blaNDM-1 elements among animal-borne Escherichia coli strains.

This study aims to investigate the prevalence and transmission dynamics of the blaNDM-1 gene in animal Escherichia coli strains. Two IncFII blaNDM-1-encoding plasmids with only minor structural variation in the MDR region, pHNEC46-NDM and pHNEC55-NDM, were found to be responsible for the transmission of blaNDM-1 in these strains. The blaNDM-1 gene can be incorporated into plasmids and stably inherited in animal-borne E. coli strains that can be maintained in animal gut microflora even without carbapenem selection pressure. Copyright © 2016 American Society for Microbiology.


July 7, 2019

Novel plasmid-mediated colistin resistance gene mcr-3 in Escherichia coli.

The mobile colistin resistance gene mcr-1 has attracted global attention, as it heralds the breach of polymyxins, one of the last-resort antibiotics for the treatment of severe clinical infections caused by multidrug-resistant Gram-negative bacteria. To date, six slightly different variants of mcr-1, and a second mobile colistin resistance gene, mcr-2, have been reported or annotated in the GenBank database. Here, we characterized a third mobile colistin resistance gene, mcr-3 The gene coexisted with 18 additional resistance determinants in the 261-kb IncHI2-type plasmid pWJ1 from porcine Escherichia colimcr-3 showed 45.0% and 47.0% nucleotide sequence identity to mcr-1 and mcr-2, respectively, while the deduced amino acid sequence of MCR-3 showed 99.8 to 100% and 75.6 to 94.8% identity to phosphoethanolamine transferases found in other Enterobacteriaceae species and in 10 Aeromonas species, respectively. pWJ1 was mobilized to an E. coli recipient by conjugation and contained a plasmid backbone similar to those of other mcr-1-carrying plasmids, such as pHNSHP45-2 from the original mcr-1-harboring E. coli strain. Moreover, a truncated transposon element, TnAs2, which was characterized only in Aeromonas salmonicida, was located upstream of mcr-3 in pWJ1. This ?TnAs2-mcr-3 element was also identified in a shotgun genome sequence of a porcine E. coli isolate from Malaysia, a human Klebsiella pneumoniae isolate from Thailand, and a human Salmonella enterica serovar Typhimurium isolate from the United States. These results suggest the likelihood of a wide dissemination of the novel mobile colistin resistance gene mcr-3 among Enterobacteriaceae and aeromonads; the latter may act as a potential reservoir for mcr-3IMPORTANCE The emergence of the plasmid-mediated colistin resistance gene mcr-1 has attracted substantial attention worldwide. Here, we examined a colistin-resistant Escherichia coli isolate that was negative for both mcr-1 and mcr-2 and discovered a novel mobile colistin resistance gene, mcr-3 The amino acid sequence of MCR-3 aligned closely with phosphoethanolamine transferases from Enterobacteriaceae and Aeromonas species originating from both clinical infections and environmental samples collected in 12 countries on four continents. Due to the ubiquitous profile of aeromonads in the environment and the potential transfer of mcr-3 between Enterobacteriaceae and Aeromonas species, the wide spread of mcr-3 may be largely underestimated. As colistin has been and still is widely used in veterinary medicine and used at increasing frequencies in human medicine, the continuous monitoring of mobile colistin resistance determinants in colistin-resistant Gram-negative bacteria is imperative for understanding and tackling the dissemination of mcr genes in both the agricultural and health care sectors. Copyright © 2017 Yin et al.


July 7, 2019

Complete genome sequences of two Salmonella enterica subsp. enterica serovar Enteritidis strains isolated from egg products in the United States.

Egg-associated salmonellosis is an important public health problem in many countries. Here, we report the genome sequences, including plasmids, of two strains of Salmonella enterica subsp. enterica serovar Enteritidis isolated from egg products in 2012 and 2013 in the United States. This will provide more information and insight into the research about egg-associated salmonellosis. Copyright © 2017 Hu et al.


July 7, 2019

Genetic and biochemical characterization of HMB-1, a novel subclass B1 metallo-ß-lactamase found in a Pseudomonas aeruginosa clinical isolate.

To characterize a novel subclass B1 metallo-ß-lactamase (MBL) found in an MDR Pseudomonas aeruginosa clinical isolate.The isolate P. aeruginosa NRZ-03096 was recovered in 2012 from an anal swab from a patient hospitalized in Northern Germany and showed high MICs of carbapenems. MBL production was analysed by several phenotypic tests. Genetic characterization of the novel bla gene and MLST was performed by WGS. The novel bla gene was expressed in Escherichia coli TOP10 and the enzyme was subjected to biochemical characterization to determine the kinetic parameters K m and k cat .P. aeruginosa NRZ-03096 was resistant to all tested ß-lactams and showed an MBL phenotype. Shotgun cloning experiments yielded a clone producing a novel subclass B1 enzyme with only 74.3% identity to the next nearest relative, KHM-1. The novel MBL was named HMB-1 (for Hamburg MBL). Analysis of WGS data showed that the bla HMB-1 gene was chromosomally located as part of a Tn 3 family transposon that was named Tn 6345 . Expression of bla HMB-1 in E. coli TOP10 led to increased resistance to ß-lactams. Determination of K m and k cat revealed that HMB-1 had different hydrolytic characteristics compared with KHM-1, with lower hydrolytic rates for cephalosporins and a higher rate for imipenem.The identification of HMB-1 further underlines the ongoing spread and diversification of carbapenemases in Gram-negative human pathogens and especially in P. aeruginosa .


July 7, 2019

Characterization and genome comparisons of three Achromobacter phages of the family Siphoviridae.

In this study, we present the characterization and genomic data of three Achromobacter phages belonging to the family Siphoviridae. Phages 83-24, JWX and JWF were isolated from sewage samples in Paris and Braunschweig, respectively, and infect Achromobacter xylosoxidans, an emerging nosocomial pathogen in cystic fibrosis patients. Analysis of morphology and growth parameters revealed that phages 83-24 and JWX have similar properties, both have nearly the same head and tail measurements, and both have a burst size between 85 and 100 pfu/cell. In regard to morphological properties, JWF had a much longer and more flexible tail compared to other phages. The linear double-stranded DNAs of all three phages are terminally redundant and not circularly permutated. The complete nucleotide sequences consist of 81,541 bp for JWF, 49,714 bp for JWX and 48,216 bp for 83-24. Analysis of the genome sequences showed again that phages JWX and 83-24 are quite similar. Comparison to the GenBank database via BLASTN revealed partial similarities to Roseobacter phage RDJL phi1 and Burkholderia phage BcepGomr. In contrast, BLASTN analysis of the genome sequence of phage JWF revealed only few similarities to non-annotated prophage regions in different strains of Burkholderia and Mesorhizobium.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.