July 7, 2019  |  

Prevalence and molecular characterization of mcr-1-positive Salmonella strains recovered from clinical specimens in China.

Authors: Cui, Mingquan and Zhang, Jinfei and Gu, Zhen and Li, Ruichao and Chan, Edward Wai-Chi and Yan, Meiyin and Wu, Congming and Xu, Xuebin and Chen, Sheng

The recently discovered colistin resistance element, mcr-1, adds to the list of antimicrobial resistance genes that rapidly erode the antimicrobial efficacy of not only the commonly used antibiotics but also the last-line agents of carbapenems and colistin. This study investigated the prevalence of the mobile colistin resistance determinant mcr-1 in Salmonella strains recovered from clinical settings in China and the transmission potential of mcr-1-bearing mobile elements harbored by such isolates. The mcr-1 gene was recoverable in 1.4% of clinical isolates tested, with the majority of them belonging to Salmonella enterica serotype Typhimurium. These isolates exhibited diverse pulsed-field gel electrophoresis (PFGE) profiles and high resistance to antibiotics other than colistin and particularly to cephalosporins. Plasmid analysis showed that mcr-1 was carried on a variety of plasmids with sizes ranging from ~30 to ~250 kb, among which there were conjugative plasmids of ~30 kb, ~60 kb, and ~250 kb and nonconjugative plasmids of ~140 kb, ~180 kb, and ~240 kb. Sequencing of representative mcr-1-carrying plasmids revealed that all conjugative plasmids belonged to the IncX4, IncI2, and IncHI2 types and were highly similar to the corresponding types of plasmids reported previously. Nonconjugative plasmids all belonged to the IncHI2 type, and the nontransferability of these plasmids was attributed to the loss of a region carrying partial or complete tra genes. Our data revealed that, similar to the situation in Escherichia coli, mcr-1 transmission in Salmonella was accelerated by various plasmids, suggesting that transmission of mcr-1-carrying plasmids between different species of Enterobacteriaceae may be a common event. Copyright © 2017 American Society for Microbiology.

Journal: Antimicrobial agents and chemotherapy
DOI: 10.1128/AAC.02471-16
Year: 2017

Read publication

Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.