Menu
July 7, 2019

Genomics and comparative genomic analyses provide insight into the taxonomy and pathogenic potential of novel Emmonsia pathogens.

Over the last 50 years, newly described species of Emmonsia-like fungi have been implicated globally as sources of systemic human mycosis (emmonsiosis). Their ability to convert into yeast-like cells capable of replication and extra-pulmonary dissemination during the course of infection differentiates them from classical Emmonsia species. Immunocompromised patients are at highest risk of emmonsiosis and exhibit high mortality rates. In order to investigate the molecular basis for pathogenicity of the newly described Emmonsia species, genomic sequencing and comparative genomic analyses of Emmonsia sp. 5z489, which was isolated from a non-deliberately immunosuppressed diabetic patient in China and represents a novel seventh isolate of Emmonsia-like fungi, was performed. The genome size of 5z489 was 35.5 Mbp in length, which is ~5 Mbp larger than other Emmonsia strains. Further, 9,188 protein genes were predicted in the 5z489 genome and 16% of the assembly was identified as repetitive elements, which is the largest abundance in Emmonsia species. Phylogenetic analyses based on whole genome data classified 5z489 and CAC-2015a, another novel isolate, as members of the genus Emmonsia. Our analyses showed that divergences among Emmonsia occurred much earlier than other genera within the family Ajellomycetaceae, suggesting relatively distant evolutionary relationships among the genus. Through comparisons of Emmonsia species, we discovered significant pathogenicity characteristics within the genus as well as putative virulence factors that may play a role in the infection and pathogenicity of the novel Emmonsia strains. Moreover, our analyses revealed a novel distribution mode of DNA methylation patterns across the genome of 5z489, with >50% of methylated bases located in intergenic regions. These methylation patterns differ considerably from other reported fungi, where most methylation occurs in repetitive loci. It is unclear if this difference is related to physiological adaptations of new Emmonsia, but this question warrants further investigation. Overall, our analyses provide a framework from which to further study the evolutionary dynamics of Emmonsia strains and identity the underlying molecular mechanisms that determine the infectious and pathogenic potency of these fungal pathogens, and also provide insight into potential targets for therapeutic intervention of emmonsiosis and further research.


July 7, 2019

A high-coverage draft genome of the mycalesine butterfly Bicyclus anynana.

The mycalesine butterfly Bicyclus anynana , the ‘Squinting bush brown’, is a model organism in the study of lepidopteran ecology, development and evolution. Here, we present a draft genome sequence for B. anynana to serve as a genomics resource for current and future studies of this important model species.Seven libraries with insert sizes ranging from 350 bp to 20 kb were constructed using DNA from an inbred female and sequenced using both Illumina and PacBio technology. 128 Gb raw Illumina data were filtered to 124 Gb and assembled to a final size of 475 Mb (~260X assembly coverage). Contigs were scaffolded using mate-pair, transcriptome and PacBio data into 10,800 sequences with an N50 of 638 kb (longest scaffold 5 Mb). The genome is comprised of 26% repetitive elements, and encodes a total of 22,642 predicted protein-coding genes. Recovery of a BUSCO set of core metazoan genes was almost complete (98%). Overall, these metrics compare well with other recently published lepidopteran genomes.We report a high-quality draft genome sequence for Bicyclus anynana . The genome assembly and annotated gene models are available at LepBase ( http://ensembl.lepbase.org/index.html ).


July 7, 2019

Improved high-quality draft genome sequence and annotation of Burkholderia contaminans LMG 23361T.

Burkholderia contaminans LMG 23361 is the type strain of the species isolated from the milk of a dairy sheep with mastitis. Some pharmaceutical products contain disinfectants such as benzalkonium chloride (BZK) and previously we reported that B. contaminans LMG 23361(T) possesses the ability to inactivate BZK with high biodegradation rates. Here, we report an improved high-quality draft genome sequence of this strain. Copyright © 2017 Jung et al.


July 7, 2019

Proteogenomics produces comprehensive and highly accurate protein-coding gene annotation in a complete genome assembly of Malassezia sympodialis.

Complete and accurate genome assembly and annotation is a crucial foundation for comparative and functional genomics. Despite this, few complete eukaryotic genomes are available, and genome annotation remains a major challenge. Here, we present a complete genome assembly of the skin commensal yeast Malassezia sympodialis and demonstrate how proteogenomics can substantially improve gene annotation. Through long-read DNA sequencing, we obtained a gap-free genome assembly for M. sympodialis (ATCC 42132), comprising eight nuclear and one mitochondrial chromosome. We also sequenced and assembled four M. sympodialis clinical isolates, and showed their value for understanding Malassezia reproduction by confirming four alternative allele combinations at the two mating-type loci. Importantly, we demonstrated how proteomics data could be readily integrated with transcriptomics data in standard annotation tools. This increased the number of annotated protein-coding genes by 14% (from 3612 to 4113), compared to using transcriptomics evidence alone. Manual curation further increased the number of protein-coding genes by 9% (to 4493). All of these genes have RNA-seq evidence and 87% were confirmed by proteomics. The M. sympodialis genome assembly and annotation presented here is at a quality yet achieved only for a few eukaryotic organisms, and constitutes an important reference for future host-microbe interaction studies.© The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.


July 7, 2019

The MHC locus and genetic susceptibility to autoimmune and infectious diseases.

In the past 50 years, variants in the major histocompatibility complex (MHC) locus, also known as the human leukocyte antigen (HLA), have been reported as major risk factors for complex diseases. Recent advances, including large genetic screens, imputation, and analyses of non-additive and epistatic effects, have contributed to a better understanding of the shared and specific roles of MHC variants in different diseases. We review these advances and discuss the relationships between MHC variants involved in autoimmune and infectious diseases. Further work in this area will help to distinguish between alternative hypotheses for the role of pathogens in autoimmune disease development.


July 7, 2019

Whole genome sequencing and analysis of Campylobacter coli YH502 from retail chicken reveals a plasmid-borne type VI secretion system.

Campylobacter is a major cause of foodborne illnesses worldwide. Campylobacter infections, commonly caused by ingestion of undercooked poultry and meat products, can lead to gastroenteritis and chronic reactive arthritis in humans. Whole genome sequencing (WGS) is a powerful technology that provides comprehensive genetic information about bacteria and is increasingly being applied to study foodborne pathogens: e.g., evolution, epidemiology/outbreak investigation, and detection. Herein we report the complete genome sequence of Campylobacter coli strain YH502 isolated from retail chicken in the United States. WGS, de novo assembly, and annotation of the genome revealed a chromosome of 1,718,974 bp and a mega-plasmid (pCOS502) of 125,964 bp. GC content of the genome was 31.2% with 1931 coding sequences and 53 non-coding RNAs. Multiple virulence factors including a plasmid-borne type VI secretion system and antimicrobial resistance genes (beta-lactams, fluoroquinolones, and aminoglycoside) were found. The presence of T6SS in a mobile genetic element (plasmid) suggests plausible horizontal transfer of these virulence genes to other organisms. The C. coli YH502 genome also harbors CRISPR sequences and associated proteins. Phylogenetic analysis based on average nucleotide identity and single nucleotide polymorphisms identified closely related C. coli genomes available in the NCBI database. Taken together, the analyzed genomic data of this potentially virulent strain of C. coli will facilitate further understanding of this important foodborne pathogen most likely leading to better control strategies. The chromosome and plasmid sequences of C. coli YH502 have been deposited in GenBank under the accession numbers CP018900.1 and CP018901.1, respectively.


July 7, 2019

Comparative genome analysis of Lactobacillus plantarum GB-LP3 provides candidates of survival-related genetic factors.

Lactobacillus plantarum is found in various environmental niches such as in the gastrointestinal tract of an animal host or a fermented food. This species isolated from a certain environment is known to possess a variety of properties according to inhabited environment’s adaptation. However, a causal relationship of a genetic factor and phenotype affected by a specific environment has not been systematically comprehended. L. plantarum GB-LP3 strain was isolated from Korean traditional fermented vegetable and the whole genome of GB-LP3 was sequenced. Comparative genome analysis of GB-LP3, with other 14 L. plantarum strains, was conducted. In addition, genomic island regions were investigated. The assembled whole GB-LP3 genome contained a single circular chromosome of 3,206,111bp with the GC content of 44.7%. In the phylogenetic tree analysis, GB-LP3 was in the closest distance from ZJ316. The genomes of GB-LP3 and ZJ316 have the high level of synteny. Functional genes that are related to prophage, bacteriocin, and quorum sensing were found through comparative genomic analysis with ZJ316 and investigation of genomic islands. dN/dS analysis identified that the gene coding for phosphonate ABC transporter ATP-binding protein is evolutionarily accelerated in GB-LP3. Our study found that potential candidate genes that are affected by environmental adaptation in Korea traditional fermented vegetable. Copyright © 2017. Published by Elsevier B.V.


July 7, 2019

Insight into potential probiotic markers predicted in Lactobacillus pentosus MP-10 genome sequence.

Lactobacillus pentosus MP-10 is a potential probiotic lactic acid bacterium originally isolated from naturally fermented Aloreña green table olives. The entire genome sequence was annotated to in silico analyze the molecular mechanisms involved in the adaptation of L. pentosus MP-10 to the human gastrointestinal tract (GIT), such as carbohydrate metabolism (related with prebiotic utilization) and the proteins involved in bacteria-host interactions. We predicted an arsenal of genes coding for carbohydrate-modifying enzymes to modify oligo- and polysaccharides, such as glycoside hydrolases, glycoside transferases, and isomerases, and other enzymes involved in complex carbohydrate metabolism especially starch, raffinose, and levan. These enzymes represent key indicators of the bacteria’s adaptation to the GIT environment, since they involve the metabolism and assimilation of complex carbohydrates not digested by human enzymes. We also detected key probiotic ligands (surface proteins, excreted or secreted proteins) involved in the adhesion to host cells such as adhesion to mucus, epithelial cells or extracellular matrix, and plasma components; also, moonlighting proteins or multifunctional proteins were found that could be involved in adhesion to epithelial cells and/or extracellular matrix proteins and also affect host immunomodulation. In silico analysis of the genome sequence of L. pentosus MP-10 is an important initial step to screen for genes encoding for proteins that may provide probiotic features, and thus provides one new routes for screening and studying this potentially probiotic bacterium.


July 7, 2019

The origin, diversification and adaptation of a major mangrove clade (Rhizophoreae) revealed by whole-genome sequencing

Mangroves invade some very marginal habitats for woody plants—at the interface between land and sea. Since mangroves anchor tropical coastal communities globally, their origin, diversification and adaptation are of scientific significance, particularly at a time of global climate change. In this study, a combination of single-molecule long reads and the more conventional short reads are generated from Rhizophora apiculata for the de novo assembly of its genome to a near chromosome level. The longest scaffold, N50 and N90 for the R. apiculata genome, are 13.3 Mb, 5.4 Mb and 1.0 Mb, respectively. Short reads for the genomes and transcriptomes of eight related species are also generated. We find that the ancestor of Rhizophoreae experienced a whole-genome duplication ~70 Myrs ago, which is followed rather quickly by colonization and species diversification. Mangroves exhibit pan-exome modifications of amino acid (AA) usage as well as unusual AA substitutions among closely related species. The usage and substitution of AAs, unique among plants surveyed, is correlated with the rapid evolution of proteins in mangroves. A small subset of these substitutions is associated with mangroves’ highly specialized traits (vivipary and red bark) thought to be adaptive in the intertidal habitats. Despite the many adaptive features, mangroves are among the least genetically diverse plants, likely the result of continual habitat turnovers caused by repeated rises and falls of sea level in the geologically recent past. Mangrove genomes thus inform about their past evolutionary success as well as portend a possibly difficult future.


July 7, 2019

Complete genome sequence of the Bifidobacterium animalis subspecies lactis BL3, preventive probiotics for acute colitis and colon cancer.

We report the genome sequence of Bifidobacterium animalis subspecies lactis BL3, which has preventive properties on acute colitis and colon cancer. The genome of BL3, which was isolated from Korean faeces, consisted of a 1 944 323 bp size single chromosome, and its G+C content was 60.5%. Genome comparison against the closest Bifidobacterium animalis strain revealed that BL3 had particularly different regions of four areas encoding flavin-nucleotide-binding protein, transposase, multidrug ABC transporter and ATP binding protein.


July 7, 2019

Complete genome sequence and bioinformatics analyses of Bacillus thuringiensis strain BM-BT15426.

This study aimed to investigate the genetic characteristics of Bacillus thuringiensis strain BM-BT15426.B. thuringiensis strain was identified by sequencing the PCR product (amplifying 16S rRNA gene) using ABI Prism 377 DNA Sequencer. The genome was sequenced using PacBio RS II sequencers and assembled de novo using HGAP. Also, further genome annotation was performed.The genome of B. thuringiensis strain BM-BT15426 has a length of 5,246,329 bp and contains 5409 predicted genes with an average G + C content of 35.40%. Three genes were involved in the “Infectious diseases: Amoebiasis” pathway. A total of 21 virulence factors and 9 antibiotic resistant genes were identified.The major pathogenic factors of B. thuringiensis strain BM-BT15426 were identified through complete genome sequencing and bioinformatics analyses which contributes to further study on pathogenic mechanism and phenotype of B. thuringiensis. Copyright © 2017 Elsevier Ltd. All rights reserved.


July 7, 2019

Complete genome of a metabolically-diverse marine bacterium Shewanella japonica KCTC 22435T.

Shewanella japonica KCTC 22435Tis a facultatively anaerobic, Gram-negative, mesophilic, rod-shaped bacterium isolated from sea water at the Pacific Institute of Bio-organic Chemistry of the Marine Experimental Station, Troitza Bay, Gulf of Peter the Great, Russia. Here, we report the complete genome of S. japonica KCTC 22435T, which consists of 4,975,677bp (G+C content of 40.80%) with a single chromosome, 4036 protein-coding genes, 97 tRNAs and 8 rRNA operons. Genes detected in the genome reveal that the strain possesses a type II secretion system, cytochrome c family proteins with various numbers of heme-binding motifs, and metabolic pathways for utilizing diverse carbon sources, supporting the potential of KCTC 22435Tto generate electricity in salinity culture conditions. Copyright © 2017 Elsevier B.V. All rights reserved.


July 7, 2019

Comparative genomics of all three Campylobacter sputorum biovars and a novel cattle-associated C. sputorum clade.

Campylobacter sputorum is a non-thermotolerant campylobacter that is primarily isolated from food animals such as cattle and sheep. C. sputorum is also infrequently associated with human illness. Based on catalase and urease activity, three biovars are currently recognized within C. sputorum: bv. sputorum (catalase negative, urease negative), bv. fecalis (catalase positive, urease negative), and bv. paraureolyticus (catalase negative, urease positive). A multi-locus sequence typing (MLST) method was recently constructed for C. sputorum. MLST typing of several cattle-associated C. sputorum isolates suggested that they are members of a divergent C. sputorum clade. Although catalase positive, and thus technically bv. fecalis, the taxonomic position of these strains could not be determined solely by MLST. To further characterize C. sputorum, the genomes of four strains, representing all three biovars and the divergent clade, were sequenced to completion. Here we present a comparative genomic analysis of the four C. sputorum genomes. This analysis indicates that the three biovars and the cattle-associated strains are highly-related at the genome level with similarities in gene content. Furthermore, the four genomes are strongly syntenic with one or two minor inversions. However, substantial differences in gene content were observed among the three biovars. Finally, although the strain representing the cattle-associated isolates was shown to be C. sputorum, it is possible that this strain is a member of a novel C. sputorum subspecies; thus, these cattle-associated strains may form a second taxon within C. sputorum. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution 2017. This work is written by US Government employees and is in the public domain in the US.


July 7, 2019

Complete genome sequence of Planococcus donghaensis JH1(T), a pectin-degrading bacterium.

The type strain Planococcus donghaensis JH1(T) is a psychrotolerant and halotolerant bacterium with starch-degrading ability. Here, we determine the carbon utilization profile of P. donghaensis JH1(T) and report the first complete genome of the strain. This study revealed the strain’s ability to utilize pectin and d-galacturonic acid, and identified genes responsible for degradation of the polysaccharides. The genomic information provided may serve as a fundamental resource for full exploration of the biotechnological potential of P. donghaensis JH1(T). Copyright © 2017. Published by Elsevier B.V.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.