Menu
July 7, 2019

Euglena gracilis genome and transcriptome: organelles, nuclear genome assembly strategies and initial features.

Euglena gracilis is a major component of the aquatic ecosystem and together with closely related species, is ubiquitous worldwide. Euglenoids are an important group of protists, possessing a secondarily acquired plastid and are relatives to the Kinetoplastidae, which themselves have global impact as disease agents. To understand the biology of E. gracilis, as well as to provide further insight into the evolution and origins of the Kinetoplastidae, we embarked on sequencing the nuclear genome; the plastid and mitochondrial genomes are already in the public domain. Earlier studies suggested an extensive nuclear DNA content, with likely a high degree of repetitive sequence, together with significant extrachromosomal elements. To produce a list of coding sequences we have combined transcriptome data from both published and new sources, as well as embarked on de novo sequencing using a combination of 454, Illumina paired end libraries and long PacBio reads. Preliminary analysis suggests a surprisingly large genome approaching 2 Gbp, with a highly fragmented architecture and extensive repeat composition. Over 80% of the RNAseq reads from E. gracilis maps to the assembled genome sequence, which is comparable with the well assembled genomes of T. brucei and T. cruzi. In order to achieve this level of assembly we employed multiple informatics pipelines, which are discussed here. Finally, as a preliminary view of the genome architecture, we discuss the tubulin and calmodulin genes, which highlight potential novel splicing mechanisms.


July 7, 2019

A small secreted protein in Zymoseptoria tritici is responsible for avirulence on wheat cultivars carrying the Stb6 resistance gene.

Zymoseptoria tritici is the causal agent of Septoria tritici blotch, a major pathogen of wheat globally and the most damaging pathogen of wheat in Europe. A gene-for-gene (GFG) interaction between Z. tritici and wheat cultivars carrying the Stb6 resistance gene has been postulated for many years, but the genes have not been identified. We identified AvrStb6 by combining quantitative trait locus mapping in a cross between two Swiss strains with a genome-wide association study using a natural population of c. 100 strains from France. We functionally validated AvrStb6 using ectopic transformations. AvrStb6 encodes a small, cysteine-rich, secreted protein that produces an avirulence phenotype on wheat cultivars carrying the Stb6 resistance gene. We found 16 nonsynonymous single nucleotide polymorphisms among the tested strains, indicating that AvrStb6 is evolving very rapidly. AvrStb6 is located in a highly polymorphic subtelomeric region and is surrounded by transposable elements, which may facilitate its rapid evolution to overcome Stb6 resistance. AvrStb6 is the first avirulence gene to be functionally validated in Z. tritici, contributing to our understanding of avirulence in apoplastic pathogens and the mechanisms underlying GFG interactions between Z. tritici and wheat. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.


July 7, 2019

Strategies for optimizing BioNano and Dovetail explored through a second reference quality assembly for the legume model, Medicago truncatula.

Third generation sequencing technologies, with sequencing reads in the tens- of kilo-bases, facilitate genome assembly by spanning ambiguous regions and improving continuity. This has been critical for plant genomes, which are difficult to assemble due to high repeat content, gene family expansions, segmental and tandem duplications, and polyploidy. Recently, high-throughput mapping and scaffolding strategies have further improved continuity. Together, these long-range technologies enable quality draft assemblies of complex genomes in a cost-effective and timely manner.Here, we present high quality genome assemblies of the model legume plant, Medicago truncatula (R108) using PacBio, Dovetail Chicago (hereafter, Dovetail) and BioNano technologies. To test these technologies for plant genome assembly, we generated five assemblies using all possible combinations and ordering of these three technologies in the R108 assembly. While the BioNano and Dovetail joins overlapped, they also showed complementary gains in continuity and join numbers. Both technologies spanned repetitive regions that PacBio alone was unable to bridge. Combining technologies, particularly Dovetail followed by BioNano, resulted in notable improvements compared to Dovetail or BioNano alone. A combination of PacBio, Dovetail, and BioNano was used to generate a high quality draft assembly of R108, a M. truncatula accession widely used in studies of functional genomics. As a test for the usefulness of the resulting genome sequence, the new R108 assembly was used to pinpoint breakpoints and characterize flanking sequence of a previously identified translocation between chromosomes 4 and 8, identifying more than 22.7 Mb of novel sequence not present in the earlier A17 reference assembly.Adding Dovetail followed by BioNano data yielded complementary improvements in continuity over the original PacBio assembly. This strategy proved efficient and cost-effective for developing a quality draft assembly compared to traditional reference assemblies.


July 7, 2019

SMRT Sequencing revealed mitogenome characteristics and mitogenome-wide DNA modification pattern in Ophiocordyceps sinensis.

Single molecule, real-time (SMRT) sequencing was used to characterize mitochondrial (mt) genome of Ophiocordyceps sinensis and to analyze the mt genome-wide pattern of epigenetic DNA modification. The complete mt genome of O. sinensis, with a size of 157,539 bp, is the fourth largest Ascomycota mt genome sequenced to date. It contained 14 conserved protein-coding genes (PCGs), 1 intronic protein rps3, 27 tRNAs and 2 rRNA subunits, which are common characteristics of the known mt genomes in Hypocreales. A phylogenetic tree inferred from 14 PCGs in Pezizomycotina fungi supports O. sinensis as most closely related to Hirsutella rhossiliensis in Ophiocordycipitaceae. A total of 36 sequence sites in rps3 were under positive selection, with dN/dS >1 in the 20 compared fungi. Among them, 16 sites were statistically significant. In addition, the mt genome-wide base modification pattern of O. sinensis was determined in this study, especially DNA methylation. The methylations were located in coding and uncoding regions of mt PCGs in O. sinensis, and might be closely related to the expression of PCGs or the binding affinity of transcription factor A to mtDNA. Consequently, these methylations may affect the enzymatic activity of oxidative phosphorylation and then the mt respiratory rate; or they may influence mt biogenesis. Therefore, methylations in the mitogenome of O. sinensis might be a genetic feature to adapt to the cold and low PO2 environment at high altitude, where O. sinensis is endemic. This is the first report on epigenetic modifications in a fungal mt genome.


July 7, 2019

Hydroxy-pentanones production by Bacillus sp. H15-1 and its complete genome sequence

Acyloins are useful organic compounds with reactive adjacent hydroxyl group and carbonyl group. Current research is usually constrained to acetoin (i.e. 3-hydroxy-2-butanone) and the biological production of other acyloins was scarcely reported. In this study, two hydroxy-pentanone metabolites (3-hydroxy-2-pentanone and 2-hydroxy-3-pentanone) of Bacillus sp. H15-1 were identified by gas chromatography–mass spectrometry and authentic standards. Then the complete genome of this strain was sequenced and de novo assembled to a single circular chromosome of 4,162,101 bp with a guanine-cytosine content of 46.3%, but no special genes were found for the biosynthesis of the hydroxy-pentanones. Since hydroxy-pentanones are the homologues of acetoin, the two genes alsD and alsS (encoding a-acetolactate decarboxylase and a-acetolactate synthase, respectively) responsible for acetoin formation in this strain were respectively expressed in Escherichia coli. The purified enzymes were found to be capable of transforming pyruvate and 2-oxobutanoate to the two hydroxy-pentanones. This study extends the knowledge on the biosynthesis of acyloins and provides helpful information for further utilizing Bacillus sp. H15-1 as a source of valuable acyloins.


July 7, 2019

In silico analysis of protein toxin and bacteriocins from Lactobacillus paracasei SD1 genome and available online databases.

Lactobacillus paracasei SD1 is a potential probiotic strain due to its ability to survive several conditions in human dental cavities. To ascertain its safety for human use, we therefore performed a comprehensive bioinformatics analysis and characterization of the bacterial protein toxins produced by this strain. We report the complete genome of Lactobacillus paracasei SD1 and its comparison to other Lactobacillus genomes. Additionally, we identify and analyze its protein toxins and antimicrobial proteins using reliable online database resources and establish its phylogenetic relationship with other bacterial genomes. Our investigation suggests that this strain is safe for human use and contains several bacteriocins that confer health benefits to the host. An in silico analysis of protein-protein interactions between the target bacteriocins and the microbial proteins gtfB and luxS of Streptococcus mutans was performed and is discussed here.


July 7, 2019

Long-read sequencing offers path to more accurate drug metabolism profiles

In the complex drug discovery process, one of the looming questions for any new compound is how it will be metabolised in a human bodyWhi|e there are several methods for evaluating this, one of the most common involves CYP2D6,the enzyme encoded by the cytochrome P450—2D6 gene.This enzyme is involved in metabolising a quarter of all commonly used medications, making it an important target for ADME and pharmacogenomics studies. It is known to activate some drugs and to play a role in the deactivation or excretion of others.


July 7, 2019

Genetic characterization of mcr-1-bearing plasmids to depict molecular mechanisms underlying dissemination of the colistin resistance determinant.

To analyse and compare mcr-1-bearing plasmids from animal Escherichia coli isolates, and to investigate potential mechanisms underlying dissemination of mcr-1.Ninety-seven ESBL-producing E. coli strains isolated from pig farms in China were screened for the mcr-1 gene. Fifteen mcr-1-positive strains were subjected to molecular characterization and bioinformatic analysis of the mcr-1-bearing plasmids that they harboured.Three major types of mcr-1-bearing plasmids were recovered: IncX4 (~33 kb), IncI2 (~60 kb) and IncHI2 (~216-280 kb), among which the IncX4 and IncI2 plasmids were found to harbour the mcr-1 gene only, whereas multiple resistance elements including blaCTX-M, blaCMY, blaTEM, fosA, qnrS, floR and oqxAB were detected, in various combinations, alongside mcr-1 in the IncHI2 plasmids. The profiles of mcr-1-bearing plasmids in the test strains were highly variable, with coexistence of two mcr-1-bearing plasmids being common. However, the MIC of colistin was not affected by the number of mcr-1-carrying plasmids harboured. Comparative analysis of the plasmids showed that they contained an mcr-1 gene cassette with varied structures (mcr-1-orf, ISApl1-mcr-1-orf and Tn6330), with the IncHI2 type being the most active in acquiring foreign resistance genes. A novel transposon, Tn6330, with the structure ISApl1-mcr-1-orf-ISApl1 was found to be the key element mediating translocation of mcr-1 into various plasmid backbones through formation of a circular intermediate.The mcr-1 gene can be disseminated via multiple mobile elements including Tn6330, its circular intermediate and plasmids harbouring such elements. It is often co-transmitted with other resistance determinants through IncHI2 plasmids. The functional mechanism of Tn6330, a typical composite transposon harbouring mcr-1, should be further investigated.© The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.


July 7, 2019

Molecular mechanism and genetic determinants of buprofezin degradation.

Buprofezin is a widely used insect growth regulator whose residue has been frequently detected in the environment, posing a threat to aquatic organisms and non-target insects. Microorganisms play an important role in the degradation of buprofezin in the natural environment. However, the relevant catabolic pathway has not been fully characterized, and the molecular mechanism of catabolism is still completely unknown. Rhodococcus qingshengii YL-1 can utilize buprofezin as a sole source of carbon and energy for growth. In this study, the upstream catabolic pathway in strain YL-1 was identified using tandem mass spectrometry. Buprofezin is composed of a benzene ring and a heterocyclic ring. The degradation is initiated by the dihydroxylation of the benzene ring and continues via dehydrogenation, aromatic ring cleavage, breaking of an amide bond and the release of the heterocyclic ring 2-tert-butylimino-3-isopropyl-1,3,5-thiadiazinan-4-one (2-BI). A buprofezin degradation-deficient mutant strain YL-0 was isolated. Comparative genomic analysis combined with gene deletion and complementation experiments revealed that the gene cluster bfzBA3A4A1A2C is responsible for the upstream catabolic pathway of buprofezin. bfzA3A4A1A2 encodes a novel Rieske non-heme iron oxygenase (RHO) system that is responsible for the dihydroxylation of buprofezin at the benzene ring; bfzB is involved in dehydrogenation, and bfzC is in charge of benzene ring cleavage. Furthermore, the products of bfzBA3A4A1A2C can also catalyze dihydroxylation, dehydrogenation and aromatic ring cleavage of biphenyl, flavanone, flavone and bifenthrin. In addition, a transcriptional study revealed that bfzBA3A4A1A2C is organized in one transcriptional unit that is constitutively expressed in strain YL-1.Importance There is an increasing concern about the residue and environmental fate of buprofezin. Microbial metabolism is an important mechanism responsible for the buprofezin degradation in natural environment. However, the molecular mechanism and genetic determinants of microbial degradation of buprofezin has not been well identified. This work revealed that gene cluster bfzBA3A4A1A2C is responsible for the upstream catabolic pathway of buprofezin in R. qingshengii YL-1. The products of bfzBA3A4A1A2C could also degrade bifenthrin, a widely used pyrethroid insecticide. These findings enhance our understanding of the microbial degradation mechanism of buprofezin and benefit the application of strain YL-1 and bfzBA3A4A1A2C in the bioremediation of buprofezin contamination. Copyright © 2017 American Society for Microbiology.


July 7, 2019

Characterization of a PVL-negative community-acquired methicillin-resistant Staphylococcus aureus strain of sequence type 88 in China.

Sequence type 88 community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) strain SR434, isolated from an outpatient with skin and soft tissue infection, was subjected to whole genome sequencing, antimicrobial susceptibility testing, mouse skin infection model and hemolysis analysis to identify its virulence and resistance determinants. MRSA strain SR434 is resistant to clindamycin, erythromycin and fosfomycin. Four plasmids with resistance genes were identified in this strain, including a 20,658bp blaZ-carrying plasmid, a 2473bp ermC-carrying plasmid, a 2622bp fosB7-carrying plasmid (86% identity with plasmid in a ST2590 MRSA strain) and a 4817bp lnuA-carrying plasmid (99% identity with pLNU4 from bovine coagulase-nagetive Staphylococci). This strain contains staphylococcal cassette chromosome mec type IV and does not contain arginine catabolic mobile element or Panton-Valentine-Leukocidin. SR434 harbors genomic islands ?Saa, ?Saß, ?Sa? and FSa3 and pathogenicity islands ?Sa2 that carries genes encoding toxic shock syndrome toxin 1, superantigen enterotoxin C and superantigen enterotoxin L. Mouse skin infection model results show that SR434 had similar virulence potential causing invasive skin infection as a PVL-negative epidemic Korea clone HL1 (ST72). CA-MRSA strain of ST88 lineage might be a great concern for its high virulence. PVL has limited contribution to virulence phenotype among this lineage. Copyright © 2017 Elsevier GmbH. All rights reserved.


July 7, 2019

A review of methods used for studying the molecular epidemiology of Brachyspira hyodysenteriae.

Brachyspira (B.) spp. are intestinal spirochaetes isolated from pigs, other mammals, birds and humans. In pigs, seven Brachyspira spp. have been described, i.e. B. hyodysenteriae, B. pilosicoli, B. intermedia, B. murdochii, B. innocens, B. suanatina and B. hampsonii. Brachyspira hyodysenteriae is especially relevant in pigs as it causes swine dysentery and hence considerable economic losses to the pig industry. Furthermore, reduced susceptibility of B. hyodysenteriae to antimicrobials is of increasing concern. The epidemiology of B. hyodysenteriae infections is only partially understood, but different methods for detection, identification and typing have supported recent improvements in knowledge and understanding. In the last years, molecular methods have been increasingly used. Molecular epidemiology links molecular biology with epidemiology, offering unique opportunities to advance the study of diseases. This review is based on papers published in the field of epidemiology and molecular epidemiology of B. hyodysenteriae in pigs. Electronic databases were screened for potentially relevant papers using title and abstract and finally, Barcellos et al. papers were systemically selected and assessed. The review summarises briefly the current knowledge on B. hyodysenteriae epidemiology and elaborates on molecular typing techniques available. Results of the studies are compared and gaps in the knowledge are addressed. Finally, potential areas for future research are proposed. Copyright © 2017 Elsevier B.V. All rights reserved.


July 7, 2019

Draft genome sequence of the halophilic Halobacillus mangrovi KTB 131 isolated from Topan salt of the Jeon-nam in Korea.

The draft genome sequence of the halophilic bacterium Halobacillus mangrovi KTB 131, isolated from Topan salt of the Jeon-nam in Korea, was established. The genome comprises 4,151,649 bp, with a G + C content of 41.6%. The strain displays a high number of genes responsible for secondary metabolite biosynthesis, transport, and catabolism compared to other Halobacillus bacterial genus members. Numerous genes responsible for various transport systems, solute accumulation, and aromatic/sulfur decomposition were detected. The first genomic analysis encourages further research on comparative genomics and potential biotechnological applications. The whole draft genome sequence of Halobacillus mangrovi KTB 131 is now available (Bioproject PRJNA380285).


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.